25.06.2013 Views

statistique, théorie et gestion de portefeuille - Docs at ISFA

statistique, théorie et gestion de portefeuille - Docs at ISFA

statistique, théorie et gestion de portefeuille - Docs at ISFA

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Choosing x > y > Aɛ, and applying equ<strong>at</strong>ion (87) tog<strong>et</strong>her with (88) yields<br />

<br />

<br />

<br />

1<br />

f<br />

′′ 1<br />

−<br />

(x) f ′′ <br />

<br />

<br />

(y) ≤ ɛ · |x − y|. (89)<br />

Now, dividing by x and l<strong>et</strong>ting x go to infinity gives<br />

<br />

<br />

lim <br />

1<br />

x→∞ x<br />

· f ′′ <br />

<br />

<br />

(x) ≤ ɛ, (90)<br />

which conclu<strong>de</strong>s the proof. <br />

PROPOSITION 2<br />

Un<strong>de</strong>r assumption 3, we have<br />

<br />

Proof<br />

407<br />

lim<br />

x→±∞ f ′ (x) = +∞. (91)<br />

According to assumption 3 and proposition 1, lim<br />

x→±∞ x · f ′′ (x) = ∞, which means<br />

This thus gives<br />

∀α > 0, ∃Aα/x > Aɛ =⇒ x · f ′′ (x) ≥ α. (92)<br />

∀x ≥ aα, x · f ′′ (x) ≥ α ⇐⇒ f ′′ (x) ≥ α<br />

x<br />

=⇒<br />

x<br />

Aα<br />

f ′′ (t) dt ≥ α ·<br />

x<br />

Aα<br />

dt<br />

t<br />

(93)<br />

(94)<br />

=⇒ f ′ (x) ≥ α · ln x − α · ln Aα + f ′ (Aα). (95)<br />

The right-hand-si<strong>de</strong> of this last equ<strong>at</strong>ion goes to infinity as x goes to infinity, which conclu<strong>de</strong>s the proof. <br />

PROPOSITION 3<br />

Un<strong>de</strong>r assumptions 3 and 6, the function g(·) s<strong>at</strong>isfies<br />

uniformly in h, for any positive constant C. <br />

Proof For g non-<strong>de</strong>creasing, we have<br />

∀|h| ≤ C<br />

f ′′ (x) ,<br />

∀|h| ≤ C<br />

f ′′ g(x + h)<br />

, lim = 1, (96)<br />

(x) x→±∞ g(x)<br />

g<br />

<br />

x<br />

<br />

1 − C<br />

x·f ′′ <br />

(x) g(x + h)<br />

≤<br />

g(x)<br />

g(x) ≤<br />

<br />

g x<br />

1 + C<br />

x·f ′′ (x)<br />

g(x)<br />

<br />

. (97)<br />

If g is non-increasing, the same inequalities hold with the left and right terms exchanged. Therefore, the<br />

final conclusion is easily shown to be in<strong>de</strong>pen<strong>de</strong>nt of the monotocity property of g. From assumption 3 and<br />

proposition 1, we have<br />

∀α > 0, ∃Aα/x > Aɛ =⇒ x · f ′′ (x) ≥ α. (98)<br />

Thus, for all x larger than Aα and all |h| ≤ C/f ′′ (x)<br />

g x 1 − C<br />

<br />

α g(x + h)<br />

≤<br />

g(x) g(x) ≤ g x 1 + C<br />

<br />

α<br />

g(x)<br />

19<br />

(99)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!