25.06.2013 Views

statistique, théorie et gestion de portefeuille - Docs at ISFA

statistique, théorie et gestion de portefeuille - Docs at ISFA

statistique, théorie et gestion de portefeuille - Docs at ISFA

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

THEOREM 4 (TAIL EQUIVALENCE FOR A SUM OF COMONOTONIC RANDOM VARIABLES)<br />

L<strong>et</strong> X1, X2, · · · , XN be N comonotonic random variables such th<strong>at</strong> Xi ∼ W(c, χi). L<strong>et</strong> w1, w2, · · · , wN<br />

be N non-random real coefficients. Then, the variable<br />

SN = w1X1 + w2X2 + · · · + wNXN<br />

is equivalent in the upper and the lower tail to Z ∼ W(c, ˆχ) with<br />

ˆχ = <br />

wiχi . (32)<br />

<br />

The proof is obvious since, un<strong>de</strong>r the assumption of comonotonicity, the portfolio wealth S is given by<br />

S = <br />

and for modified Weibull distributions, we have<br />

i<br />

i<br />

wi · Xi d =<br />

fi(·) = sgn(·) χi<br />

397<br />

(31)<br />

N<br />

wi · fi(U), (33)<br />

i=1<br />

2/ci | · |<br />

√2 , (34)<br />

in the symm<strong>et</strong>ric case while U is a Gaussian random variable. If, in addition, we assume th<strong>at</strong> all ass<strong>et</strong>s have<br />

the same exponent ci = c, it is clear th<strong>at</strong> S ∼ W(c, ˆχ) with<br />

ˆχ = <br />

wiχi. (35)<br />

i<br />

It is important to note th<strong>at</strong> this rel<strong>at</strong>ion is exact and not asymptotic as in the case of in<strong>de</strong>pen<strong>de</strong>nt variables.<br />

When the exponents ci’s are different from an ass<strong>et</strong> to another, a similar result holds, since we can still write<br />

the inverse cumul<strong>at</strong>ive function of S as<br />

F −1<br />

S (p) =<br />

N<br />

i=1<br />

wiF −1<br />

(p), p ∈ (0, 1), (36)<br />

Xi<br />

which is the property of additive comonotonicity of the Value-<strong>at</strong>-Risk1 . L<strong>et</strong> us then sort the Xi’s such th<strong>at</strong><br />

c1 = c2 = · · · = cp < cp+1 ≤ · · · ≤ cN. We immedi<strong>at</strong>ely obtain th<strong>at</strong> S is equivalent in the tail to<br />

Z ∼ W(c1, ˆχ), where<br />

p<br />

ˆχ = wiχi. (37)<br />

i=1<br />

In such a case, only the ass<strong>et</strong>s with the f<strong>at</strong>est tails contributes to the behavior of the sum in the large <strong>de</strong>vi<strong>at</strong>ion<br />

regime.<br />

1 This rel<strong>at</strong>ion shows th<strong>at</strong>, in general, the VaR calcul<strong>at</strong>ed for comonotonic ass<strong>et</strong>s does not provi<strong>de</strong> an upper bound of the VaR,<br />

wh<strong>at</strong>ever the <strong>de</strong>pen<strong>de</strong>nce structure the portfolio may be. In<strong>de</strong>ed, in such a case, we have VaR(X1 + X2) = VaR(X1) + VaR(X2)<br />

while, by lack of coherence, we may have VaR(X1 + X2) ≥ VaR(X1) + VaR(X2) for some <strong>de</strong>pen<strong>de</strong>nce structure b<strong>et</strong>ween X1<br />

and X2.<br />

9

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!