25.06.2013 Views

statistique, théorie et gestion de portefeuille - Docs at ISFA

statistique, théorie et gestion de portefeuille - Docs at ISFA

statistique, théorie et gestion de portefeuille - Docs at ISFA

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

412 13. Gestion <strong>de</strong> <strong>portefeuille</strong> sous contraintes <strong>de</strong> capital économique<br />

Second term of the right-hand-si<strong>de</strong> of (112).<br />

We now have to show th<strong>at</strong> <br />

dh e<br />

AC∩H<br />

−f(x ∗ i +hi)−g(x∗ i +hi)<br />

(139)<br />

can be neglected. This is obvious since, by assumption 2 and 6, the function f(x) − ln g(x) remains convex<br />

for x large enough, which ensures th<strong>at</strong> f(x) − ln g(x) ≥ C1|x| for some positive constant C1 and x large<br />

enough. Thus, choosing the constant C in AC large enough, we have<br />

<br />

dh e −N<br />

i=1 f(xi)−ln<br />

<br />

g(xi)<br />

≤ dh e −C1N<br />

i=1 |x∗ i +hi|<br />

∼ O<br />

AC∩H<br />

AC∩H<br />

Thus, for S large enough, the <strong>de</strong>nsity PS(S) is asymptotically equal to<br />

PS(S) = <br />

i<br />

g(x ∗ i )<br />

In the case of the modified Weibull variables, we have<br />

f(x) =<br />

(2π) N−1<br />

2<br />

<br />

N w<br />

i=1<br />

2 iN<br />

j=1 f ′′<br />

j (x∗ j )<br />

f ′′<br />

i (x∗ i )<br />

|x|<br />

χ<br />

<br />

α′<br />

−<br />

e f ′′ (x∗ <br />

) . (140)<br />

. (141)<br />

c<br />

, (142)<br />

and<br />

c<br />

g(x) =<br />

2 √ c<br />

· |x| 2<br />

πχc/2 −1 , (143)<br />

which s<strong>at</strong>isfy our assumptions if and only if c > 1. In such a case, we obtain<br />

x ∗ i = w<br />

1<br />

c−1<br />

i<br />

c<br />

c−1<br />

wi<br />

which, after some simple algebraic manipul<strong>at</strong>ions, yield<br />

N−1<br />

c<br />

2 c<br />

P (S) ∼<br />

2(c − 1) 2 √ π<br />

with<br />

as announced in theorem 3.<br />

A.2 Sub-exponential case: c ≤ 1<br />

<br />

ˆχ = w<br />

c<br />

c−1<br />

i<br />

· S, (144)<br />

1 c<br />

|S| 2<br />

ˆχ c/2 −1 e −|S|<br />

ˆχc<br />

c−1<br />

c<br />

(145)<br />

· χ. (146)<br />

L<strong>et</strong> X1, X2, · · · , XN be N i.i.d sub-exponential modified Weibull random variables W(c, χ), with distribution<br />

function F . L<strong>et</strong> us <strong>de</strong>note by GS the distribution function of the variable<br />

where w1, w2, · · · , wN are real non-random coefficients.<br />

SN = w1X1 + w2X2 + · · · + wNXN, (147)<br />

L<strong>et</strong> w ∗ = max{|w1|, |w2|, · · · , |wN|}. Then, theorem 5.5 (b) of Goldie and Klüppelberg (1998) st<strong>at</strong>es th<strong>at</strong><br />

GS(x/w<br />

lim<br />

x→∞<br />

∗ )<br />

F (x) = Card {i ∈ {1, 2, , N} : |wi| = w ∗ }. (148)<br />

By <strong>de</strong>finition 2, this allows us to conclu<strong>de</strong> th<strong>at</strong> SN is equivalent in the upper tail to Z ∼ W(c, w ∗ χ).<br />

A similar calcul<strong>at</strong>ion yields an analogous result for the lower tail.<br />

24

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!