25.06.2013 Views

statistique, théorie et gestion de portefeuille - Docs at ISFA

statistique, théorie et gestion de portefeuille - Docs at ISFA

statistique, théorie et gestion de portefeuille - Docs at ISFA

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

320 9. Mesure <strong>de</strong> la dépendance extrême entre <strong>de</strong>ux actifs financiers<br />

Proof :<br />

Pr{X > FX −1 (u), Y > FY −1 (u)} =<br />

<br />

E 1 {X>FX −1 (u)} · 1 {Y >FY −1 <br />

(u)}<br />

<br />

= E E 1 {X>FX −1 (u)} · 1 {Y >FY −1 (u)} |Y<br />

<br />

<br />

= E 1 {Y >FY −1 <br />

(u)} · E 1 {X>FX −1 (u)} |Y<br />

<br />

<br />

= E 1 {Y >FY −1 <br />

(u)} · E 1 {ε>FX −1 <br />

=<br />

(u)−βY }<br />

<br />

E 1 {Y >FY −1 (u)} · ¯ Fε(FX −1 <br />

(u) − βY )<br />

Assuming th<strong>at</strong> the variable Y admits a <strong>de</strong>nsity PY with respect to the Lebesgue measure, this<br />

yields<br />

Pr{X > FX −1 (u), Y > FY −1 ∞<br />

(u)} =<br />

F −1<br />

Y (u)<br />

(34)<br />

(35)<br />

(36)<br />

(37)<br />

(38)<br />

dy PY (y) · ¯ Fε[FX −1 (u) − βy] . (39)<br />

Performing the change of variable y = FY −1 (u) · x, in the equ<strong>at</strong>ion above, we obtain<br />

Pr{X > FX −1 (u), Y > FY −1 (u)} = F −1<br />

Y (u)<br />

∞<br />

1<br />

dx PY (F −1<br />

and, dividing by ¯<br />

<br />

FY FY −1 (u) = 1 − u, this conclu<strong>de</strong>s the proof. <br />

L<strong>et</strong> us now <strong>de</strong>fine the function<br />

fu(x) =<br />

We can st<strong>at</strong>e the following result<br />

−1<br />

FY (u)<br />

1 − u PY (F −1<br />

Y (u) x) · ¯ Fε[FX −1 (u) − βF −1<br />

Y<br />

Lemma 2<br />

Un<strong>de</strong>r assumption H1 and H3, for all x ∈ [1, ∞),<br />

almost everywhere, as u goes to 1.<br />

fu(x) −→ 1x> l<br />

Proof: L<strong>et</strong> us apply the assumption H1. We have<br />

lim<br />

u→1<br />

F −1<br />

Y (u)<br />

Applying now the assumption H3, we have<br />

lim<br />

u→1 FX −1 (u) − βF −1<br />

Y<br />

Y (u) x) · ¯ Fε[FX −1 (u) − βF −1<br />

Y<br />

(u) x] ,<br />

(40)<br />

(u) x] . (41)<br />

β · f(x), (42)<br />

1 − u PY (F −1<br />

Y (u) x) =<br />

t PY (t x)<br />

lim<br />

t→∞ FY<br />

¯<br />

,<br />

(t)<br />

(43)<br />

= f(x). (44)<br />

(u) x = lim<br />

=<br />

21<br />

u→1<br />

βF −1<br />

Y (u)<br />

<br />

−∞ if x > l<br />

β ,<br />

∞ if x < l<br />

β ,<br />

FX −1 (u)<br />

βF −1 − x<br />

Y (u)<br />

<br />

(45)<br />

(46)<br />

(47)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!