25.06.2013 Views

statistique, théorie et gestion de portefeuille - Docs at ISFA

statistique, théorie et gestion de portefeuille - Docs at ISFA

statistique, théorie et gestion de portefeuille - Docs at ISFA

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

322 9. Mesure <strong>de</strong> la dépendance extrême entre <strong>de</strong>ux actifs financiers<br />

where the only change in (59) compared to (33) is to replace ¯ Fε(·) by ¯ F −1<br />

ε|Y =FY (u) x(·). L<strong>et</strong> us<br />

now assume th<strong>at</strong> the function ¯ Fε|Y =y(x) admits a uniform limit when x and y tend to ±∞. Then,<br />

equ<strong>at</strong>ion (48) still holds and lemma 2 remains true.<br />

As an example, l<strong>et</strong> F <strong>de</strong>note any one-dimensional distribution fonction. Then, one can easily check<br />

th<strong>at</strong>, for any conditional distribution whose form is<br />

¯F ε|Y =y(x) = ¯ <br />

y2 F x , (60)<br />

+ y2<br />

the uniform limit condition is s<strong>at</strong>isfied and theorem 1 and lemma 2 still hold. In contrast, conditional<br />

distributions of the form<br />

¯F ε|Y =y(x) = ¯ F (x − ρy) (61)<br />

do not fulfill the uniform limit condition, so th<strong>at</strong> the result given by theorem 1 does not hold.<br />

The full un<strong>de</strong>rstanding of the impact of more general <strong>de</strong>pen<strong>de</strong>nces b<strong>et</strong>ween the factor and the<br />

idiosyncr<strong>at</strong>ic noise on the coefficient of tail <strong>de</strong>pen<strong>de</strong>nce requires a full-fledge investig<strong>at</strong>ion th<strong>at</strong> we<br />

<strong>de</strong>fer to a future work. Our goal here has been to show th<strong>at</strong> one can reasonably expect our results<br />

to survice in the presence of weak <strong>de</strong>pen<strong>de</strong>nce.<br />

A.2 Tail <strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween two ass<strong>et</strong>s<br />

A.2.1 St<strong>at</strong>ement<br />

We consi<strong>de</strong>r three random variables X1, X2 and Y , rel<strong>at</strong>ed by the rel<strong>at</strong>ions<br />

y 2 0<br />

X1 = β1 · Y + ε1 (62)<br />

X2 = β2 · Y + ε2, (63)<br />

where ε1 and ε2 are two random variables in<strong>de</strong>pen<strong>de</strong>nt of Y and β1, β2 two non-random positive<br />

coefficients.<br />

L<strong>et</strong> PY and FY <strong>de</strong>note respectively the <strong>de</strong>nsity with respect to the Lebesgue measure and the<br />

distribution function of the variable Y . L<strong>et</strong> F1, (resp. F2) <strong>de</strong>notes the distribution function of<br />

X1 (resp. X2) and Fε1 (resp. Fε2 ) the marginal distribution function of ε1 (resp. ε2). L<strong>et</strong> Fε1,ε2<br />

<strong>de</strong>notes the joined distribution of (ε1, ε2). We st<strong>at</strong>e the following theorem:<br />

Theorem 2<br />

Assuming th<strong>at</strong><br />

H0: The variables Y , ε1 and ε2 have distribution functions with infinite support,<br />

H1: For all x ∈ [1, ∞),<br />

lim<br />

t→∞<br />

t PY (tx)<br />

¯<br />

FY (t)<br />

= f(x), (64)<br />

H2: There are real numbers t0 > 0, δ > 0 and A > 0, such th<strong>at</strong> for all t ≥ t0 and all x ≥ 1<br />

¯FY (tx)<br />

¯FY (t)<br />

23<br />

A<br />

≤ , (65)<br />

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!