25.06.2013 Views

statistique, théorie et gestion de portefeuille - Docs at ISFA

statistique, théorie et gestion de portefeuille - Docs at ISFA

statistique, théorie et gestion de portefeuille - Docs at ISFA

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

448 14. Gestion <strong>de</strong> Portefeuilles multimoments <strong>et</strong> équilibre <strong>de</strong> marché<br />

and<br />

⎧<br />

⎨n−2<br />

<br />

c(n, qi) = (2n)! (−1)<br />

⎩<br />

n Γ qi(n − p) + 1<br />

<br />

2<br />

(2n − 2p)!π1/2 p=0<br />

Γ qi + 1<br />

2<br />

2!π 1/2<br />

<br />

p<br />

− (−1)n<br />

n<br />

Γ qi + 1<br />

2<br />

2!π<br />

<br />

1/2<br />

⎫<br />

n⎬ .<br />

⎭<br />

(75)<br />

Note th<strong>at</strong> the coefficient c(n, qi) is the cumulant of or<strong>de</strong>r n of the marginal distribution (52) with c = 2/qi<br />

and χ = 1. The equ<strong>at</strong>ion (74) expresses simply the fact th<strong>at</strong> the cumulants of the sum of in<strong>de</strong>pen<strong>de</strong>nt variables<br />

is the sum of the cumulants of each variable. The odd-or<strong>de</strong>r cumulants are zero due to the symm<strong>et</strong>ry<br />

of the distributions.<br />

8.2.2 Case of <strong>de</strong>pen<strong>de</strong>nt ass<strong>et</strong>s<br />

Here, we restrict our exposition to the case of two random variables. The case with N arbitrary can be<br />

tre<strong>at</strong>ed in a similar way but involves r<strong>at</strong>her complex formulas. The equ<strong>at</strong>ion (72) reads<br />

ˆPS(k)<br />

1<br />

=<br />

2π 1 − ρ2 <br />

<br />

dy1dy2 exp − 1<br />

2 ytV −1 <br />

q1<br />

y1 <br />

y + ik χ1w1sgn(y1) <br />

√<br />

<br />

2<br />

+<br />

q2<br />

y2 <br />

+χ2w2sgn(y2) <br />

√<br />

<br />

2<br />

<br />

<br />

, (76)<br />

and we can show (see appendix E) th<strong>at</strong> the moments read<br />

n<br />

<br />

n<br />

Mn =<br />

p<br />

with<br />

γq1q2<br />

γq1q2 (2n, 2p) = χ2p<br />

1 χ2(n−p) 2<br />

(2n, 2p + 1) = 2χ2p+1<br />

1<br />

p=0<br />

Γ q1p + 1<br />

2<br />

χ 2(n−p)−1<br />

2<br />

, −q2(n − p) + q2 + 1<br />

2<br />

where 2F1 is an hypergeom<strong>et</strong>ric function.<br />

<br />

w p<br />

1wn−pγq1q2 2 (n, p) , (77)<br />

<br />

Γ q2(n − p) + 1<br />

<br />

2<br />

2F1 −q1p, −q2(n − p);<br />

π<br />

1<br />

<br />

; ρ2 , (78)<br />

2<br />

<br />

Γ q2(n − p) + 1 − q2<br />

<br />

2 ρ 2F1 −q1p −<br />

π<br />

q1 − 1<br />

,<br />

2<br />

; 3<br />

<br />

; ρ2 , (79)<br />

2<br />

Γ q1p + 1 + q1<br />

2<br />

These two rel<strong>at</strong>ions allow us to calcul<strong>at</strong>e the moments and cumulants for any possible values of q1 = 2/c1<br />

and q2 = 2/c2. If one of the qi’s is an integer, a simplific<strong>at</strong>ion occurs and the coefficients γ(n, p) reduce to<br />

polynomials. In the simpler case where all the qi’s are odd integer the expression of moments becomes :<br />

with<br />

Mn =<br />

n<br />

p=0<br />

<br />

n<br />

(w1χ1)<br />

p<br />

p (w2χ2) n−p<br />

min{q1p,q2(n−p)} <br />

a (2n)<br />

2p = (2p)!<br />

a (2n)<br />

2p+1<br />

s=0<br />

<br />

2(n − p)<br />

(2(n − p) − 1)!! =<br />

2n<br />

ρ s s! a (q1p)<br />

s a (q2(n−p))<br />

s , (80)<br />

(2n)!<br />

2n−p , (81)<br />

(n − p)!<br />

= 0 , (82)<br />

a (2n+1)<br />

2p = 0 , (83)<br />

a (2n+1)<br />

<br />

2(n − p)<br />

(2n + 1)!<br />

2p+1 = (2p + 1)!<br />

(2(n − p) − 1)!! =<br />

2n + 1<br />

2n−p . (84)<br />

(n − p)!<br />

24

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!