25.06.2013 Views

statistique, théorie et gestion de portefeuille - Docs at ISFA

statistique, théorie et gestion de portefeuille - Docs at ISFA

statistique, théorie et gestion de portefeuille - Docs at ISFA

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

9.1. Les différentes mesures <strong>de</strong> dépendances extrêmes 265<br />

where mij <strong>de</strong>notes E[X i · Y j | X > u, Y > u].<br />

Using the proposition A.1 of (Ang and Chen 2001) or the expressions in (Johnson and Kotz 1972, p 113),<br />

we can assert th<strong>at</strong><br />

m10 L(u, u; ρ) =<br />

<br />

1 − ρ<br />

(1 + ρ) φ(u) 1 − Φ<br />

1 + ρ u<br />

m20 L(u, u; ρ) =<br />

<br />

, (A.13)<br />

(1 + ρ 2 <br />

1 − ρ<br />

) u φ(u) 1 − Φ<br />

1 + ρ u<br />

<br />

+ ρ 1 − ρ2 <br />

2<br />

√ φ<br />

2π 1 + ρ u<br />

m11 L(u, u; ρ) =<br />

<br />

+ L(u, u; ρ),(A.14)<br />

<br />

1 − ρ<br />

2ρ u φ(u) 1 − Φ<br />

1 + ρ u<br />

<br />

1 − ρ2 2<br />

+ √ φ<br />

2π 1 + ρ u<br />

<br />

+ ρ L(u, u; ρ) , (A.15)<br />

where L(·, ·; ·) <strong>de</strong>notes the bivari<strong>at</strong>e Gaussian survival (or complementary cumul<strong>at</strong>ive) distribution:<br />

1<br />

L(h, k; ρ) =<br />

2π 1 − ρ2 ∞ ∞ <br />

dx dy exp −<br />

h k<br />

1 x<br />

2<br />

2 − 2ρxy + y2 1 − ρ2 <br />

, (A.16)<br />

φ(·) is the Gaussian <strong>de</strong>nsity:<br />

and Φ(·) is the cumul<strong>at</strong>ive Gaussian distribution:<br />

A.2.1 Asymptotic behavior of L(u, u; ρ)<br />

φ(x) = 1 x2<br />

− √ e 2 , (A.17)<br />

2π<br />

Φ(x) =<br />

x<br />

−∞<br />

We focus on the asymptotic behavior of<br />

1<br />

L(u, u; ρ) =<br />

2π 1 − ρ2 ∞ ∞<br />

dx<br />

u u<br />

du φ(u). (A.18)<br />

<br />

dy exp − 1<br />

2<br />

x 2 − 2ρxy + y 2<br />

1 − ρ 2<br />

for large u. Performing the change of variables x ′ = x − u and y ′ = y − u, we can write<br />

u2<br />

e− 1+ρ<br />

L(u, u; ρ) =<br />

2π 1 − ρ2 ∞<br />

dx<br />

0<br />

′<br />

∞<br />

0<br />

dy ′ <br />

exp −u x′ + y ′ <br />

1 + ρ<br />

<br />

exp − 1<br />

2<br />

x ′2 − 2ρx ′ y ′ + y ′2<br />

1 − ρ 2<br />

<br />

, (A.19)<br />

<br />

. (A.20)<br />

Using the fact th<strong>at</strong><br />

<br />

exp − 1 x<br />

2<br />

′2 − 2ρx ′ y ′ + y ′2<br />

1 − ρ2 <br />

= 1− x′2 − 2ρx ′ y ′ + y ′2<br />

2(1 − ρ2 +<br />

)<br />

(x′2 − 2ρx ′ y ′ + y ′2 ) 2<br />

8(1 − ρ2 ) 2 − (x′2 − 2ρx ′ y ′ + y ′2 ) 3<br />

48(1 − ρ2 ) 3 +· · · ,<br />

(A.21)<br />

and applying theorem 3.1.1 in (Jensen 1995, p 58) (Laplace’s m<strong>et</strong>hod), equ<strong>at</strong>ions (A.20) and (A.21) yield<br />

and<br />

(1 + ρ)2<br />

L(u, u; ρ) =<br />

2π 1 − ρ<br />

u2<br />

e− 1+ρ<br />

·<br />

2<br />

1/L(u, u; ρ) = 2π u2 1 − ρ 2<br />

(1 + ρ) 2<br />

u 2<br />

<br />

(2 − ρ)(1 + ρ)<br />

1 − ·<br />

1 − ρ<br />

1<br />

u2 + (2ρ2 − 6ρ + 7)(1 + ρ) 2<br />

(1 − ρ) 2<br />

−3 (12 − 13ρ + 8ρ2 − 2ρ 3 )(1 + ρ) 3<br />

(1 − ρ) 3<br />

· e u2<br />

<br />

(2 − ρ)(1 + ρ)<br />

1+ρ 1 + ·<br />

1 − ρ<br />

1<br />

+ (16 − 13ρ + 10ρ2 − 3ρ 3 )(1 + ρ) 3<br />

(1 − ρ) 3<br />

27<br />

· 1<br />

u4 · 1<br />

<br />

1<br />

+ O<br />

u6 u8 <br />

, (A.22)<br />

u2 − 3 − 2ρ + ρ2 )(1 + ρ) 2<br />

(1 − ρ) 2<br />

· 1<br />

u4 · 1<br />

<br />

1<br />

+ O<br />

u6 u8 <br />

. (A.23)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!