25.06.2013 Views

statistique, théorie et gestion de portefeuille - Docs at ISFA

statistique, théorie et gestion de portefeuille - Docs at ISFA

statistique, théorie et gestion de portefeuille - Docs at ISFA

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

for all h ∈ AC. Thus, integr<strong>at</strong>ing over all the h ∈ AC ∩ H and by continuity of the mapping<br />

<br />

G(Y) = dh g(h, Y) (128)<br />

AC∩H<br />

1<br />

− where g(h, Y) = e 2Yi·h 2 i , we can conclu<strong>de</strong> th<strong>at</strong>,<br />

Now, we remark th<strong>at</strong><br />

<br />

with<br />

H<br />

<br />

AC∩H<br />

<br />

g(x∗ i ) <br />

1<br />

−<br />

dh e 2f ′′ (x∗ i )h2 i =<br />

and <br />

dh e<br />

AC∩H<br />

<br />

H<br />

<br />

g(xi) e −f(xi)<br />

AC∩H<br />

AC∩H<br />

1<br />

−<br />

dh e 2f ′′ (x∗ i )h2 i =<br />

dh e− 1<br />

2f ′′ (x ∗ i )h2 i<br />

411<br />

S→∞<br />

−−−→ 1. (129)<br />

1<br />

−<br />

dh e 2f ′′ (x∗ i )h2 <br />

i +<br />

AC∩H<br />

1<br />

−<br />

dh e 2f ′′ (x∗ i )h2 i , (130)<br />

1<br />

− 2f ′′ (x∗ i )h2 i ∼ O<br />

(2π) N−1<br />

2<br />

<br />

N w<br />

i=1<br />

2 iN<br />

j=1 f ′′<br />

j (x∗ j )<br />

f ′′<br />

i (x∗ i )<br />

, (131)<br />

α<br />

−<br />

e f ′′ (x∗ <br />

) , α > 0, (132)<br />

where x ∗ = max{x ∗ i } (note th<strong>at</strong> 1/f ′′ (x) → ∞ with x by Proposition 1). In<strong>de</strong>ed, we clearly have<br />

<br />

AC∩H<br />

1<br />

−<br />

dh e 2f ′′ (x∗ i )h2 i ≤<br />

=<br />

<br />

AC<br />

1<br />

−<br />

dh e 2f ′′ (x∗ i )h2 i , (133)<br />

(2π) N/2<br />

f ′′ (x ∗ i )<br />

<br />

BC<br />

du <br />

i<br />

1 u<br />

− 2<br />

e 2 i<br />

f ′′ (x∗ i )<br />

<br />

2π f ′′ (x∗ i )<br />

, (134)<br />

where we have performed the change of variable ui = f ′′ (x∗ i ) · hi and <strong>de</strong>noted by BC the s<strong>et</strong> {h ∈<br />

RN , u2 i ≤ C2 }. Now, l<strong>et</strong> x∗ max = max{x∗ i } and x∗min = min{x∗i }. Expression (134) then gives<br />

<br />

AC∩H<br />

1<br />

−<br />

dh e 2f ′′ (x∗ i )h2 i ≤<br />

SN−1<br />

<br />

(2π) N/2<br />

f ′′ (x∗ min )N/2<br />

du<br />

BC<br />

e−<br />

1<br />

2 f ′′ (x∗ max )u 2 i<br />

(2π f ′′ (x∗ min<br />

f<br />

= SN−1<br />

′′ (x∗ max) N/2<br />

f ′′ (x∗ <br />

N<br />

Γ<br />

min<br />

)N 2 ,<br />

C2 2 f ′′ (x∗ max)<br />

N<br />

2 −1<br />

f ′′ (x ∗ max) N/2<br />

f ′′ (x ∗ min )N<br />

C 2<br />

2 f ′′ (x ∗ max)<br />

))N/2 , (135)<br />

<br />

, (136)<br />

· e −<br />

C 2<br />

2 f ′′ (x∗ max ) , (137)<br />

which <strong>de</strong>cays exponentially fast for large S (or large x ∗ max) as long as f ′′ goes to zero <strong>at</strong> infinity, i.e, for any<br />

function f which goes to infinity not faster than x 2 . So, finally<br />

<br />

AC∩H<br />

1<br />

−<br />

dh e 2f ′′ (x∗ i )h2 i =<br />

which conclu<strong>de</strong>s the proof of equ<strong>at</strong>ion (113).<br />

(2π) N−1<br />

2<br />

<br />

N w<br />

i=1<br />

2 iN<br />

j=1 f ′′<br />

j (x∗ j )<br />

f ′′<br />

i (x∗ i )<br />

23<br />

<br />

+ O e −<br />

α<br />

f ′′ (x∗ max )<br />

<br />

, (138)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!