25.06.2013 Views

statistique, théorie et gestion de portefeuille - Docs at ISFA

statistique, théorie et gestion de portefeuille - Docs at ISFA

statistique, théorie et gestion de portefeuille - Docs at ISFA

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

C. Then, if g1(X1), · · · , gn(Xn) are strictly increasing on the ranges of X1, · · · , Xn, the random variables<br />

Y1 = g1(X1), · · · , Yn = gn(Xn) have exactly the same copula C (Lindskog 2000). The copula is thus<br />

invariant un<strong>de</strong>r strictly increasing tranform<strong>at</strong>ion of the variables. This provi<strong>de</strong>s a powerful way of studying<br />

scale-invariant measures of associ<strong>at</strong>ions. It is also a n<strong>at</strong>ural starting point for construction of multivari<strong>at</strong>e<br />

distributions and provi<strong>de</strong>s the theor<strong>et</strong>ical justific<strong>at</strong>ion of the m<strong>et</strong>hod of d<strong>et</strong>ermin<strong>at</strong>ion of mutivari<strong>at</strong>e distributions<br />

th<strong>at</strong> we will use in the sequel.<br />

6.2 Transform<strong>at</strong>ion of an arbitrary random variable into a Gaussian variable<br />

L<strong>et</strong> us consi<strong>de</strong>r the r<strong>et</strong>urn X, taken as a random variable characterized by the probability <strong>de</strong>nsity p(x). The<br />

transform<strong>at</strong>ion y(x) which obtains a standard normal variable y from x is d<strong>et</strong>ermined by the conserv<strong>at</strong>ion<br />

of probability:<br />

Integr<strong>at</strong>ing this equ<strong>at</strong>ion from −∞ and x, we obtain:<br />

441<br />

p(x)dx = 1 y2<br />

− √ e 2 dy . (35)<br />

2π<br />

F (x) = 1<br />

2<br />

where F (x) is the cumul<strong>at</strong>ive distribution of X:<br />

F (x) =<br />

This leads to the following transform<strong>at</strong>ion y(x):<br />

<br />

1 + erf<br />

<br />

y√2<br />

, (36)<br />

x<br />

dx<br />

−∞<br />

′ p(x ′ ) . (37)<br />

y = √ 2 erf −1 (2F (x) − 1) , (38)<br />

which is obvously an increasing function of X as required for the applic<strong>at</strong>ion of the invariance property of<br />

the copula st<strong>at</strong>ed in the previous section. An illustr<strong>at</strong>ion of the nonlinear transform<strong>at</strong>ion (38) is shown in<br />

figure 6. Note th<strong>at</strong> it does not require any special hypothesis on the probability <strong>de</strong>nsity X, apart from being<br />

non-<strong>de</strong>gener<strong>at</strong>e.<br />

In the case where the pdf of X has only one maximum, we may use a simpler expression equivalent to (38).<br />

Such a pdf can be written un<strong>de</strong>r the so-called Von Mises param<strong>et</strong>riz<strong>at</strong>ion (Embrechts <strong>et</strong> al. 1997) :<br />

p(x) = C f ′ (x) 1<br />

− e 2<br />

|f(x)| f(x) , (39)<br />

where C is a constant of normaliz<strong>at</strong>ion. For f(x)/x 2 → 0 when |x| → +∞, the pdf has a “f<strong>at</strong> tail,” i.e., it<br />

<strong>de</strong>cays slower than a Gaussian <strong>at</strong> large |x|.<br />

L<strong>et</strong> us now <strong>de</strong>fine the change of variable<br />

Using the rel<strong>at</strong>ionship p(y) = p(x) dx<br />

dy , we g<strong>et</strong>:<br />

y = sgn(x) |f(x)| . (40)<br />

p(y) = 1 y2<br />

− √ e 2 . (41)<br />

2π<br />

It is important to stress the presence of the sign function sgn(x) in equ<strong>at</strong>ion (40), which is essential in or<strong>de</strong>r<br />

to correctly quantify <strong>de</strong>pen<strong>de</strong>nces b<strong>et</strong>ween random variables. This transform<strong>at</strong>ion (40) is equivalent to (38)<br />

but of a simpler implement<strong>at</strong>ion and will be used in the sequel.<br />

17

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!