25.06.2013 Views

statistique, théorie et gestion de portefeuille - Docs at ISFA

statistique, théorie et gestion de portefeuille - Docs at ISFA

statistique, théorie et gestion de portefeuille - Docs at ISFA

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

In our tests presented below, we focus on pairs of ass<strong>et</strong>s, i.e., on Gaussian copulas involving only<br />

two random variables. Testing the Gaussian copula hypothesis for two random variables gives useful<br />

inform<strong>at</strong>ion for a larger number of <strong>de</strong>pen<strong>de</strong>nt variables constituting a large bask<strong>et</strong> or portfolio. In<strong>de</strong>ed,<br />

l<strong>et</strong> us assume th<strong>at</strong> each pair (a, b), (b, c) and (c, a) have a gaussian copula. Then, the tripl<strong>et</strong> (a, b, c) has<br />

also a Gaussian copula. This result generalizes to an arbitrary number of random variables.<br />

2.4 The Stu<strong>de</strong>nt’s copula<br />

The Stu<strong>de</strong>nt’s copula is <strong>de</strong>rived from the Stu<strong>de</strong>nt’s multivari<strong>at</strong>e distribution. Given a multivari<strong>at</strong>e Stu<strong>de</strong>nt’s<br />

distribution Tρ,ν with ν <strong>de</strong>grees of freedom and a correl<strong>at</strong>ion m<strong>at</strong>rix ρ<br />

1 Γ<br />

Tρ,ν(x) = √<br />

d<strong>et</strong> ρ<br />

<br />

ν+n<br />

2<br />

Γ <br />

ν<br />

2 (πν) N/2<br />

the corresponding Stu<strong>de</strong>nt’s copula reads :<br />

Cρ,ν(u1, · · · , un) = Tρ,ν<br />

x1<br />

−∞<br />

xN<br />

· · ·<br />

−∞<br />

<br />

dx<br />

1 + xt ρx<br />

ν<br />

ν+n<br />

2<br />

199<br />

, (16)<br />

t −1<br />

ν (u1), · · · , t −1<br />

ν (un) , (17)<br />

where tν is the univari<strong>at</strong>e Stu<strong>de</strong>nt’s distribution with ν <strong>de</strong>grees of freedom. The <strong>de</strong>nsity of the Stu<strong>de</strong>nt’s<br />

copula is thus<br />

where yk = t −1<br />

ν (uk).<br />

cρ,ν(u1, · · · , un) =<br />

1 Γ<br />

√<br />

d<strong>et</strong> ρ<br />

<br />

ν+n ν<br />

2 Γ<br />

<br />

ν+1 Γ 2<br />

n−1 2<br />

n<br />

<br />

n<br />

k=1<br />

<br />

1 + y2 k<br />

ν<br />

1 + yt ρy<br />

ν<br />

ν+1<br />

2<br />

ν+n<br />

2<br />

, (18)<br />

Since the Stu<strong>de</strong>nt’s distribution tends to the normal distribution when ν goes to infinity, the Stu<strong>de</strong>nt’s<br />

copula tends to the Gaussian copula as ν → +∞. In contrast to the Gaussian copula, the Stu<strong>de</strong>nt’s<br />

copula for ν finite presents a tail <strong>de</strong>pen<strong>de</strong>nce given by :<br />

λν(ρ) = lim<br />

u→1<br />

¯Cρ,ν(u, u)<br />

1 − u<br />

= 2¯tν+1<br />

√ √ <br />

ν + 1 1 − ρ<br />

√<br />

1 + ρ<br />

, (19)<br />

where ¯tν+1 is the complementary cumul<strong>at</strong>ive univari<strong>at</strong>e Stu<strong>de</strong>nt’s distribution with ν + 1 <strong>de</strong>grees of<br />

freedom (see (Embrechts <strong>et</strong> al. 2001) for the proof). Figure 1 shows the upper tail <strong>de</strong>pen<strong>de</strong>nce coefficient<br />

as a function of the correl<strong>at</strong>ion coefficient ρ for different values of the number ν of <strong>de</strong>grees of freedom.<br />

As expected from the fact th<strong>at</strong> the Stu<strong>de</strong>nt’s copula becomes i<strong>de</strong>ntical to the Gaussian copula for ν →<br />

+∞ for all ρ = 1, λν(ρ) exhibits a regular <strong>de</strong>cay to zero as ν increases. Moreover, for ν sufficiently large,<br />

the tail <strong>de</strong>pen<strong>de</strong>nce is significantly different from 0 only when the correl<strong>at</strong>ion coefficient is sufficiently<br />

close to 1. This suggests th<strong>at</strong>, for mo<strong>de</strong>r<strong>at</strong>e values of the correl<strong>at</strong>ion coefficient, a Stu<strong>de</strong>nt’s copula with<br />

a large number of <strong>de</strong>grees of freedom may be difficult to distinguish from the Gaussian copula from a<br />

st<strong>at</strong>istical point of view. This st<strong>at</strong>ement will be ma<strong>de</strong> quantit<strong>at</strong>ive in the following.<br />

Figure 2 presents the same inform<strong>at</strong>ion in a different way by showing the maximum value of the<br />

correl<strong>at</strong>ion coefficient ρ as a function of ν, below which the tail <strong>de</strong>pen<strong>de</strong>nce λν(ρ) of a Stu<strong>de</strong>nt’s copula<br />

is smaller than a given small value, here taken equal to 1%, 2.5%, 5% and 10%. The choice λν(ρ) = 5%<br />

for instance corresponds to 1 event in 20 for which the pair of variables are asymptotically coupled. At<br />

7

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!