25.06.2013 Views

statistique, théorie et gestion de portefeuille - Docs at ISFA

statistique, théorie et gestion de portefeuille - Docs at ISFA

statistique, théorie et gestion de portefeuille - Docs at ISFA

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

D Testing non-nested hypotheses with the encompassing principle<br />

D.1 Testing the Par<strong>et</strong>o mo<strong>de</strong>l against the (SE) mo<strong>de</strong>l<br />

D.1.1 Pseudo-true value<br />

L<strong>et</strong> us consi<strong>de</strong>r the two mo<strong>de</strong>ls, str<strong>et</strong>ched exponential (SE) and Par<strong>et</strong>o (P). The pdf’s associ<strong>at</strong>ed with these<br />

two mo<strong>de</strong>ls are f1(x|c,d) and f2(x|b) respectively . Un<strong>de</strong>r the true distribution f0(x), we will d<strong>et</strong>ermine the<br />

pseudo-true values of the maximum likelihood estim<strong>at</strong>ors ˆb, ĉ and d, ˆ namely, the values of these param<strong>et</strong>ers<br />

which minimize the (Kullback-Leibler) distance b<strong>et</strong>ween the consi<strong>de</strong>red mo<strong>de</strong>l and the true distribution<br />

(Gouriéroux and Monfort 1994). Thus, the pseudo-true values b∗ , c∗ and d∗ of ˆb, ĉ and dˆ appear as the<br />

expected values of the estim<strong>at</strong>ors un<strong>de</strong>r f0. For instance<br />

b ∗ = arginf<br />

b E0<br />

<br />

ln f0(x)<br />

<br />

, (81)<br />

f2(x|b)<br />

where, in all wh<strong>at</strong> follows, E0[·] <strong>de</strong>notes the expect<strong>at</strong>ion un<strong>de</strong>r the probability measure associ<strong>at</strong>ed with the<br />

true distribution f0. Thus, b∗ is simply solution of<br />

∂<br />

∂b E0<br />

<br />

ln f0(x)<br />

<br />

= 0, (82)<br />

f2(x|b)<br />

which yields<br />

b ∗ = (E0[lnx] − lnu) −1 , (83)<br />

and is consistently estim<strong>at</strong>ed by the maximum likelihood estim<strong>at</strong>or<br />

<br />

ˆb<br />

1<br />

=<br />

T ∑lnxi<br />

−1 − lnu . (84)<br />

In fact, the maximum likelihood estim<strong>at</strong>or ˆb converges to its pseudo-true value, with (ˆb−b ∗ ) asymptotically<br />

normally distributed with zero mean.<br />

Similarly, the maximum likelihood estim<strong>at</strong>ors ĉ and ˆ<br />

d converge to their pseudo-true values c ∗ and d ∗ .<br />

D.1.2 Binding functions and encompassing<br />

L<strong>et</strong> us now ask wh<strong>at</strong> is the value b † (c,d) of the param<strong>et</strong>er b for which f2(x|b) is the nearest to f1(x|c,d), for<br />

a given (c,d). Such a value b † is the binding function and is solution of<br />

b † (c,d) = arginf<br />

b E1<br />

<br />

ln f1(x|c,d)<br />

<br />

, (85)<br />

f2(x|b)<br />

which only involves f1 and f2 but not the true distribution f0. The binding function is given by<br />

b † <br />

(c,d) = E1 ln x<br />

<br />

− ln<br />

d<br />

u<br />

−1 . (86)<br />

d<br />

After some calcul<strong>at</strong>ions, we find<br />

<br />

E1 ln x<br />

<br />

d<br />

97<br />

= c<br />

dc e( u d ) c<br />

·∞<br />

dx ln<br />

u<br />

x<br />

d xc−1 e −( x d ) c<br />

, (87)<br />

= ln u<br />

d + e( u d ) c<br />

c Γ<br />

<br />

u<br />

c 0, ,<br />

d<br />

(88)<br />

33

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!