25.06.2013 Views

statistique, théorie et gestion de portefeuille - Docs at ISFA

statistique, théorie et gestion de portefeuille - Docs at ISFA

statistique, théorie et gestion de portefeuille - Docs at ISFA

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

9.2. Estim<strong>at</strong>ion du coefficient <strong>de</strong> dépendance <strong>de</strong> queue 321<br />

which gives<br />

and finally<br />

lim<br />

u→1<br />

lim<br />

u→1 fu(x) = lim<br />

u→1<br />

= 1x> l<br />

which conclu<strong>de</strong>s the proof. <br />

¯Fε[FX −1 (u) − βF −1<br />

β Y (u) x] = 1x><br />

l , (48)<br />

F −1<br />

Y (u)<br />

1 − u PY (F −1<br />

Y (u) x) · lim ¯Fε[FX<br />

u→1<br />

−1 (u) − βF −1<br />

Y (u) x], (49)<br />

β · f(x), (50)<br />

L<strong>et</strong> us now prove th<strong>at</strong> there exists an integrable function g(x) such th<strong>at</strong>, for all t ≥ t0 and all x ≥ 1,<br />

we have ft(x) ≤ g(x). In<strong>de</strong>ed, l<strong>et</strong> us write<br />

t PY (tx)<br />

¯FY (t) = t PY (tx)<br />

¯FY (tx) · ¯ FY (tx)<br />

¯FY (t)<br />

For the leftmost factor in the right-hand-si<strong>de</strong> of equ<strong>at</strong>ion (51), we easily obtain<br />

∀t, ∀x ≥ 1,<br />

t PY (tx)<br />

¯FY (tx) ≤ x∗ PY (x ∗ )<br />

¯FY (x ∗ )<br />

. (51)<br />

· 1<br />

, (52)<br />

x<br />

where x∗ <strong>de</strong>notes the point where the function x PY (x)<br />

¯FY<br />

reaches its maximum. The rightmost factor<br />

(x)<br />

in the right-hand-si<strong>de</strong> of (51) is smaller than A/xδ by assumption H2, so th<strong>at</strong><br />

Posing<br />

∀t ≥ t0, ∀x ≥ 1,<br />

t PY (tx)<br />

¯FY (t) ≤ x∗ PY (x ∗ )<br />

¯FY (x ∗ )<br />

g(x) = x∗ PY (x ∗ )<br />

¯FY (x ∗ )<br />

· A<br />

. (53)<br />

x1+δ · A<br />

, (54)<br />

x1+δ and recalling th<strong>at</strong>, for all ε ∈ R, ¯ Fε(ε) ≤ 1, we have found an integrable function such th<strong>at</strong> for<br />

some u0 ≥ 0, we have<br />

∀u ∈ [u0, 1), ∀x ≥ 1, fu(x) ≤ g(x) . (55)<br />

Thus, applying Lebesgue’s theorem of domin<strong>at</strong>ed convergence, we can assert th<strong>at</strong><br />

∞<br />

∞<br />

lim dx fu(x) = dx 1x> u→1 1<br />

1<br />

l β · f(x). (56)<br />

Since<br />

lim<br />

u→1<br />

∞<br />

the proof of theorem 1 is conclu<strong>de</strong>d. <br />

1<br />

dx fu(x) = lim Pr<br />

u→1 X > F −1<br />

−1<br />

X (u)|Y > FY (u) , (57)<br />

= λ, (58)<br />

Remark: This result still holds in the presence of <strong>de</strong>pen<strong>de</strong>nce b<strong>et</strong>ween the factor and the idiosyncr<strong>at</strong>ic<br />

noise. In<strong>de</strong>ed, <strong>de</strong>noting by ¯ Fε|Y the survival distribution of ε conditional on Y , lemma 1 can<br />

easily be generalized:<br />

Pr X > F −1<br />

−1<br />

X (u)|Y > FY (u) =<br />

F −1<br />

Y (u)<br />

1 − u<br />

∞<br />

dx PY<br />

1<br />

22<br />

F −1<br />

Y (u) x · ¯ F −1<br />

ε|Y =FY (u) x<br />

FX −1 (u) − βF −1<br />

Y (u) x ,<br />

(59)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!