25.06.2013 Views

statistique, théorie et gestion de portefeuille - Docs at ISFA

statistique, théorie et gestion de portefeuille - Docs at ISFA

statistique, théorie et gestion de portefeuille - Docs at ISFA

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

F.2 General case<br />

We now consi<strong>de</strong>r a portfolio with N in<strong>de</strong>pen<strong>de</strong>nt ass<strong>et</strong>s. Assuming th<strong>at</strong> the cumulants Cn(i) have the same<br />

sign for all i (according to axiom 1), we are going to show th<strong>at</strong> the minimum of Cn is obtained for a portfolio<br />

whose weights are given by<br />

and we have<br />

µ ∗ n =<br />

wi =<br />

<br />

N<br />

i=1<br />

In<strong>de</strong>ed, the cumulant of the portfolio is given by<br />

subject to the constraint<br />

Cn =<br />

1<br />

N<br />

j=i Cn(j) n−1<br />

1<br />

N<br />

j=1 Cn(j) n−1<br />

µ(i) N<br />

j=i<br />

1<br />

N<br />

j=1 Cn(j) n−1<br />

N<br />

i=1<br />

Cn(i) w n i<br />

463<br />

, (162)<br />

1<br />

Cn(j) n−1<br />

Introducing a Lagrange multiplier λ, the first or<strong>de</strong>r conditions yields<br />

so th<strong>at</strong><br />

Cn(i) w n−1<br />

i<br />

. (163)<br />

(164)<br />

N<br />

wi = 1. (165)<br />

i=1<br />

− λ = 0, ∀i ∈ {1, · · · , N}, (166)<br />

w n−1<br />

i<br />

λ<br />

= . (167)<br />

Cn(i)<br />

Since all the Cn(i) are positive, we can find a λ such th<strong>at</strong> all the wi are real and positive, which yields the<br />

announced result (162). From here, there is no simple condition th<strong>at</strong> ensures µ ∗ n < µ ∗ n+k . The simplest way<br />

is to calcul<strong>at</strong>e dir<strong>et</strong>ly these quantities using the formula (163).<br />

to compare µ ∗ n and µ ∗ n+k<br />

39

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!