25.06.2013 Views

statistique, théorie et gestion de portefeuille - Docs at ISFA

statistique, théorie et gestion de portefeuille - Docs at ISFA

statistique, théorie et gestion de portefeuille - Docs at ISFA

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

A Corcos <strong>et</strong> al Q UANTITATIVE F INANCE<br />

p t<br />

Autocorrel<strong>at</strong>ion<br />

1.0<br />

m = 60<br />

1.0<br />

m = 100<br />

0.8<br />

0.8<br />

0.6<br />

0.6<br />

0.4<br />

0.4<br />

0.2<br />

0.2<br />

0.0<br />

0.0<br />

0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000<br />

t t<br />

1.0<br />

1.0<br />

0.5<br />

0.5<br />

0.0<br />

–0.5<br />

–1.0<br />

0 20 40 60 80 100 120 140 160 180<br />

200<br />

p t<br />

Autocorrel<strong>at</strong>ion<br />

0.0<br />

–0.5<br />

–1.0<br />

0 20 40 60 80 100 120 140 160 180 200<br />

Time lag Time lag<br />

Figure 11. The upper panels represent the time series pt for m = 60 (left) and m = 100 (right). The lower panels represent the<br />

corresponding autocorrel<strong>at</strong>ion function of rt ∝ p − 1/2 for m = 60 (left) and m = 100 (right) with the same param<strong>et</strong>ers ρhb = ρbh = 0.72<br />

and ρhh = ρbb = 0.85.<br />

1.2<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

Exponential<br />

<strong>de</strong>cay<br />

Power-law<br />

<strong>de</strong>cay<br />

R<strong>et</strong>urn<br />

Vol<strong>at</strong>ility<br />

0 50 100 150 200 250 300<br />

Figure 12. Autocorrel<strong>at</strong>ion function of the r<strong>et</strong>urns and of the<br />

vol<strong>at</strong>ility for m = 60 polled agents and the param<strong>et</strong>ers<br />

ρhb = ρbh = 0.72 and ρhh = ρbb = 0.85.<br />

Figure 13 compares the dynamics for the symm<strong>et</strong>ric<br />

system (upper panel (a)) and for the asymm<strong>et</strong>ric system<br />

(lower panel (b)). It is clear th<strong>at</strong>, as expected, the number<br />

of periodic orbits <strong>de</strong>creases significantly in the asymm<strong>et</strong>ric<br />

system. However, there are still an unrealistic number of<br />

neg<strong>at</strong>ive bubbles. It is not possible to increase the asymm<strong>et</strong>ry<br />

sufficiently strongly without exiting from the chaotic regime.<br />

This unrealistic fe<strong>at</strong>ure is thus an intrinsic property and<br />

limit<strong>at</strong>ion of the present mo<strong>de</strong>l. We shall indic<strong>at</strong>e in the<br />

conclusion possible extensions and remedies.<br />

Figure 14 compares the cumul<strong>at</strong>ive distributions of p−1/2<br />

for m = 60 for the symm<strong>et</strong>ric and asymm<strong>et</strong>ric cases. The<br />

strong effect of the weakly unstable periodic orbits observed<br />

in the periodic case has disappeared. In addition, the tail of<br />

274<br />

171<br />

(a)<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000<br />

(b)<br />

t<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000<br />

t<br />

p t<br />

p t<br />

Figure 13. Time evolution of pt over 100 00 time steps for m = 60<br />

polled agents in (a) a symm<strong>et</strong>ric case ρhb = ρbh = 0.72 and<br />

ρhh = ρbb = 0.85 and (b) an asymm<strong>et</strong>ric case ρhb = 0.72,<br />

ρbh = 0.74, ρhh = 0.85 and ρbb = 0.87.<br />

the distribution <strong>de</strong>cays faster in the asymm<strong>et</strong>ric case, in b<strong>et</strong>ter<br />

(but still not very good) agreement with empirical d<strong>at</strong>a.<br />

Figure 15 shows the correl<strong>at</strong>ion function of the r<strong>et</strong>urns for<br />

a symm<strong>et</strong>ric and an asymm<strong>et</strong>ric case. In the asymm<strong>et</strong>ric case,<br />

there is no trace of oscill<strong>at</strong>ions but the <strong>de</strong>cay is slightly slower.<br />

7. Finite-size effects<br />

Until now, our analysis has focused on the limit of an infinite<br />

number N →∞of agents, in which each agent polls randomly<br />

m agents among N. In this limit, we have shown th<strong>at</strong>, for a large<br />

domain in the param<strong>et</strong>er space, the dynamics of the r<strong>et</strong>urns is<br />

chaotic with interesting and qualit<strong>at</strong>ively realistic properties.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!