25.06.2013 Views

statistique, théorie et gestion de portefeuille - Docs at ISFA

statistique, théorie et gestion de portefeuille - Docs at ISFA

statistique, théorie et gestion de portefeuille - Docs at ISFA

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

54 2. Modèles phénoménologiques <strong>de</strong> cours<br />

D. Sorn<strong>et</strong>te, Y. Malevergne / Physica A 299 (2001) 40–59 51<br />

4. The crash hazard r<strong>at</strong>e mo<strong>de</strong>l [16,17]<br />

In the stylised framework of a purely specul<strong>at</strong>ive ass<strong>et</strong> th<strong>at</strong> pays no divi<strong>de</strong>nds—i.e.,<br />

with zero fundamental price—and in which we ignore inform<strong>at</strong>ion asymm<strong>et</strong>ry and the<br />

mark<strong>et</strong>-clearing condition, the price of the ass<strong>et</strong> equals the price of the bubble and the<br />

valu<strong>at</strong>ion formula (3) leads to the familiar martingale hypothesis for the bubble price:<br />

for all t ′ ¿t t→t ′EQ[X (t ′ )|Ft]=X (t) : (24)<br />

This equ<strong>at</strong>ion is nothing but a generalis<strong>at</strong>ion of Eq. (6) to a continuous time formul<strong>at</strong>ion,<br />

in which t→t ′ <strong>de</strong>notes the discount factor from time t to time t′ .<br />

We consi<strong>de</strong>r a general bubble dynamics given by<br />

dX = m(t) X (t)dt − X (t)dj; (25)<br />

where m(t) can be any non-linear causal function of X itself. We add a jump process<br />

j to capture the possibility th<strong>at</strong> the bubble exhibits a crash. j is thus zero before the<br />

crash and one afterwards. The random n<strong>at</strong>ure of the crash occurrence is mo<strong>de</strong>led by the<br />

cumul<strong>at</strong>ive distribution function Q(t) of the time of the crash, the probability <strong>de</strong>nsity<br />

function q(t)=dQ=dt and the hazard r<strong>at</strong>e h(t)=q(t)=[1 − Q(t)]. The hazard r<strong>at</strong>e is the<br />

probability per unit of time th<strong>at</strong> the crash will happen in the next instant provi<strong>de</strong>d it<br />

has not happened y<strong>et</strong>, i.e.:<br />

EQ[dj|Ft]=h(t)dt: (26)<br />

Expression (25) assumes th<strong>at</strong>, during a crash, the bubble drops by a xed percentage<br />

∈ (0; 1), say b<strong>et</strong>ween 20% and 30% of the bubble price.<br />

Using EQ[X (t +dt)|Ft]=(1+r dt)X (t), where r is the riskless discount r<strong>at</strong>e, taking<br />

the expect<strong>at</strong>ion of (25) conditioned on the ltr<strong>at</strong>ion up to time t and using Eq. (26),<br />

we g<strong>et</strong><br />

EQ[dX |Ft]=m(t)X (t)dt − X (t)h(t)dt = rX (t)dt; (27)<br />

which yields<br />

m(t) − r = h(t) : (28)<br />

If the crash hazard r<strong>at</strong>e h(t) increases, the r<strong>et</strong>urn m(t)−r above the riskless interest r<strong>at</strong>e<br />

increases to compens<strong>at</strong>e the tra<strong>de</strong>rs for the increasing risk. Reciprocally, if the dynamics<br />

of the bubble shoots up, the r<strong>at</strong>ional expect<strong>at</strong>ion condition imposes an increasing crash<br />

risk in or<strong>de</strong>r to ensure the absence of arbitrage opportunities: the risk-adjusted r<strong>et</strong>urn<br />

remains constant equal to the risk-free r<strong>at</strong>e. The corresponding equ<strong>at</strong>ion for the bubble<br />

price, conditioned on the crash not to have occurred, is<br />

t<br />

X (t)<br />

log = rt + h(t<br />

X (t0)<br />

t0<br />

′ )dt ′<br />

before the crash : (29)<br />

The integral t<br />

t0 h(t′ )dt ′ is the cumul<strong>at</strong>ive probability of a crash until time t. This gives<br />

the logarithm of the bubble price as the relevant observable. It has successfully been

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!