Views
1 week ago

[ COMBO ] BỒI DƯỠNG TOÁN 8 NÂNG CAO VÀ PHÁT TRIỂN (VŨ HỮU BÌNH-NXBGD) & TUYỂN TẬP ĐỀ THI HSG TOÁN 8 (NGUYỄN VĂN TÚ-THCS THANH MỸ)

LINK BOX: https://app.box.com/s/mbtcdzkyknzu3tt5xnuv4suq80w4mafz LINK DOCS.GOOGLE: https://drive.google.com/file/d/11FC-7DtuqyevI5EnZE5oOGH8vX5YHhK-/view?usp=sharing

https://twitter.com/daykemquynhon plus.google.com/+DạyKèmQuyNhơn www.facebook.com/daykem.quynhon http://daykemquynhon.blogspot.com http://daykemquynhon.ucoz.com Nơi bồi dưỡng kiến thức Toán - Lý - Hóa cho học sinh cấp 2+3 / Diễn Đàn Toán - Lý - Hóa 1000B Trần Hưng Đạo Tp.Quy Nhơn Tỉnh Bình Định b a, Nếu: b ≤ 998 thì d b, Nếu: b = 998 thì a =1 ⇒ ≤ 998 ⇒ c a + ≤ 999 c b d a b 999 + = c d c d b d 1 + Đạt giá trị lớn nhất khi d = 1; c = 999 a 1 Vậy: giá trị lớn nhất của + = 999 + khi a = d = 1; c = b = 999 999 Ví dụ 4 : Với mọi số tự nhiên n >1 chứng minh rằng : Ta có Do đó: 1 1 1 > = n + k n + n 2n với k = 1,2,3,…,n-1 1 1 1 1 1 n 1 + + ... + > + ... + = = n + 1 n + 2 2n 2n 2n 2n 2 1 2 1 3 1 4 1 1 1 1 3 < + + .... + < 2 n + 1 n + 2 n + n 4 Ví dụ 5: CMR: A = 1+ + + + ........ + với n ≥ 2 không là số tự nhiên 2 2 2 2 1 n 1 < 1 ; 1 < 1 ;..... 2 1.2. 3 2.3 HD: 2 2 Ví dụ 6: Cho a ,b ,c ,d > 0 .Chứng minh rằng : Giải : a + b b + c c + d d + a 2 < + + + < 3 a + b + c b + c + d c + d + a d + a + b Vì a ,b ,c ,d > 0 nên ta có: a + b a + b a + b + d < < a + b + c + d a + b + c a + b + c + d b + + c b + c b + c + a < < a + b + c + d b + c + d a + b + c + d d + a d + a d + a + c < < a + b + c + d d + a + b a + b + c + d Cộng các vế của 4 bất đẳng thức trên ta có : a + b b + c c + d d + a 2 < + + + < 3 a + b + c b + c + d c + d + a d + a + b 5. Phương pháp 5:Dùng bất đẳng thức trong tam giác Lưu ý: Nếu a;b;clà số đo ba cạnh của tam giác thì : a; b; c > 0 Và |b-c| < a < b+c ; |a-c| < b < a+c ; |a-b| < c < b+a Ví dụ1: (1) (2) (3) (đpcm) DIỄN ĐÀN TOÁN - LÍ - HÓA 1000B TRẦN HƯNG ĐẠO TP.QUY NHƠN Skype : live:daykemquynhonbusiness https://daykemquynhonofficial.wordpress.com/blog/ DẠY KÈM QUY NHƠN OFFICIAL ST> : Đ/C 1000B TRẦN HƯNG ĐẠO TP.QUY NHƠN 86 Đóng góp PDF bởi GV. Nguyễn Thanh Tú www.facebook.com/daykemquynhonofficial www.facebook.com/boiduonghoahocquynhonofficial

https://twitter.com/daykemquynhon plus.google.com/+DạyKèmQuyNhơn www.facebook.com/daykem.quynhon http://daykemquynhon.blogspot.com http://daykemquynhon.ucoz.com Nơi bồi dưỡng kiến thức Toán - Lý - Hóa cho học sinh cấp 2+3 / Diễn Đàn Toán - Lý - Hóa 1000B Trần Hưng Đạo Tp.Quy Nhơn Tỉnh Bình Định Cho a; b; clà số đo ba cạnh của tam giác chứng minh rằng a, a 2 + b 2 + c 2 < 2(ab + bc + ac) b, abc > (a+b-c).(b+c-a).(c+a-b) Giải a)Vì a,b,c là số đo 3 cạnh của một tam giác nên ta có ⎧0 < a < b + c ⎪ ⎨0 < b < a + c ⎪ ⎩0 < c < a + b Cộng từng vế các bất đẳng thức trên ta có a 2 + b 2 + c 2 < 2(ab + bc + ac) 2 2 2 b) Ta có a > ⎢b-c ⎪ ⇒ a > a − ( b − c) > 0 2 2 2 b > ⎢a-c ⎪ ⇒ b > b − ( c − a) > 0 2 2 2 c > ⎢a-b ⎪ ⇒ c > c − ( a − b) > 0 ⇒ ⎧a ⎪ ⎨b ⎪ ⎩ c 2 2 2 < a( b + c) < b( a + c) < c( a + b) 2 2 2 2 2 2 Nhân vế các bất đẳng thức ta được: a b c > a − ( b − c) b − ( c − a) c − ( a − b) ⎡ 2 ⎤ ⎡ 2 ⎤ ⎡ 2 ⎤ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ 2 2 2 ( ) ( ) ( ) ( ).( ).( ) ⇒ > + − + − + − ⇒ > + − + − + − 2 2 2 a b c a b c b c a c a b abc a b c b c a c a b Ví dụ2: (đổi biến số) Cho a,b,c là ba cạnh của một tam giác. Chứng minh rằng Đặt x= b + c ; y= c + a ;z = a + b ta có a = ta có (1) ⇔ y + z − x z + x − y x + y − z + + 2x 2y 2z y x z x z y ⇔ ( + ) + ( + ) + ( + ) ≥ 6 x y x z y z Ví dụ 3: (đổi biến số) y + z − x 2 ; b = a b c 3 + + ≥ b + c c + a a + b 2 z + x − y 2 ; c = x + y − z 2 3 y z x z x y ≥ ⇔ + −1+ + −1+ + −1 ≥ 3 2 x x y y z z là Bđt đúng? 1 1 1 + 2bc 2 b + 2ac 2 c + 2ab Cho a, b, c > 0 và a + b + c 0 87 Đóng góp PDF bởi GV. Nguyễn Thanh Tú www.facebook.com/daykemquynhonofficial www.facebook.com/boiduonghoahocquynhonofficial

GIẢI BÀI TẬP SINH HỌC 9 NGUYỄN VĂN SANG VÀ NGUYỄN THỊ VÂN THƯ VIỆN TRƯỜNG THCS NGÔ THÌ NHẬM ĐÀ NẴNG
DẠY HỌC VÀ KIỂM TRA, ĐÁNH GIÁ KẾT QUẢ HỌC TẬP CỦA HỌC SINH THEO ĐỊNH HƯỚNG PHÁT TRIỂN NĂNG LỰC
[DISCUSSION] Ô nhiễm môi trường nước tại sông Cửa Tiền
Giáo án new headway elementary (2nd) 90 tiết
TRÌNH BÀY CƠ SỞ PHỔ PHÂN TỬ VÀ ỨNG DỤNG TRONG PHÂN TÍCH VẬT CHẤT
PHÂN DẠNG BÀI TẬP TRONG ĐỀ ĐẠI HỌC MÔN HÓA HỌC MAI VĂN HẢI
Tìm hiểu về bao bì năng động (active package)
ĐỘC HỌC MÔI TRƯỜNG VÀ SỨC KHỎE CỘNG ĐỒNG
CÁC TRẠNG THÁI VẬT LÝ CỦA POLYMER
Luyện siêu trí nhớ từ vựng tiếng anh Nguyễn Anh Đức (Cb) (B&W) #TủSáchVàng
HỢP CHẤT CÓ OXI CỦA LƯU HUỲNH LỚP SƯ PHẠM HÓA K37 QNU THỰC HIỆN NĂM 2017
CÔNG NGHỆ SẢN XUẤT XI MĂNG LÒ QUAY KHÔ
Tuyển tập đề thi trắc nghiệm và tự luận toán THPT Ngô Long Hậu
HƯỚNG DẪN ÔN TẬP KÌ THI TRUNG HỌC PHỔ THÔNG QUỐC GIA NĂM HỌC 2015-2016 MÔN NGỮ VĂN NGUYỄN DUY KHA
Giáo trình toán cao cấp A1
Ôn thi vào lớp 10 trung học phổ thông chuyên môn sinh học
Tổng hợp nanocomposite trên cơ sở Ag/PVA bằng phương pháp hóa học với tác nhân khử là hydrazin hydrat
Hóa dược tập 1 Trần Đức Hậu Nxb Y học 2007
THỰC HÀNH HÓA HỌC ĐẠI CƯƠNG NGUYỄN ĐỨC CHUNG (ONLINE VERSION)
TÌM HIỂU TRẠNG THÁI SIÊU TỚI HẠN CỦA NƯỚC (SUPERCRITICAL WATER) VÀ ỨNG DỤNG
Cơ sở lý thuyết của phương pháp sắc ký bản mỏng và ứng dụng của sắc ký bản mỏng
CẨM NANG NGỮ PHÁP TIẾNG ANH THỰC HÀNH NGUYỄN MẠNH THẢO (2015)
[Handwriting] Giáo trình Toeic - GMTOEIC (V1)
BÀI TẬP TRẮC NGHIỆM HÓA HỮU CƠ CẨM NANG DÙNG LUYỆN THI THPTQG CHẤT LƯỢNG CAO (COLOR BOOK)
LECTURE ÔN TẬP THI TỐT NGHIỆP HÓA DƯỢC PHẠM THỊ THÙY LINH
ĐIỆN CỰC SO SÁNH TRONG QUÁ TRÌNH PHÂN TÍCH
Seminar Những tiến bộ trong hóa học xanh CO2 siêu tới hạn (Supercritical CO2)
BÀI TẬP TRẮC NGHIỆM HÓA ĐẠI CƯƠNG VÀ VÔ CƠ CẨM NANG DÙNG LUYỆN THI THPTQG CHẤT LƯỢNG CAO (COLOR BOOK)