16.01.2013 Aufrufe

aktualisiertes pdf - DPG-Tagungen

aktualisiertes pdf - DPG-Tagungen

aktualisiertes pdf - DPG-Tagungen

MEHR ANZEIGEN
WENIGER ANZEIGEN

Sie wollen auch ein ePaper? Erhöhen Sie die Reichweite Ihrer Titel.

YUMPU macht aus Druck-PDFs automatisch weboptimierte ePaper, die Google liebt.

Q 22 Poster Quanteninformation, -kommunikation und -computer<br />

Zeit: Dienstag 14:00–16:00 Raum: Schellingstr. 3<br />

Q 22.1 Di 14:00 Schellingstr. 3<br />

Addressing of individual neutral atoms — •Igor Dotsenko, Dominik<br />

Schrader, Yevhen Miroshnychenko, Mkrtych Khudaverdyan,<br />

Stefan Kuhr, Wolfgang Alt, Arno Rauschenbeutel,<br />

and Dieter Meschede — Institut für Angewandte Physik, Universität<br />

Bonn, Wegelerstr. 8, 53113 Bonn<br />

We have experimentally solved the problem of addressing individual<br />

neutral atoms from a string of atoms stored in a standing wave<br />

dipole trap. We apply a magnetic field gradient to produce a positiondependent<br />

shift of the atomic hyperfine transitions. Using an intensified<br />

CCD-camera we spatially resolve atoms and get information about their<br />

positions [1]. The population of each atom is coherently transferred by<br />

applying microwave radiation at the corresponding resonance frequency<br />

of the atom [2].<br />

By applying spectrally narrow pulses the population of a neighbouring<br />

atom is not affected if the atomic separation is larger than ∼ 2µm.<br />

The coherence properties of the atoms are characterized by observing<br />

Rabi oscilations which show no contrast decay within measurement time<br />

of 200 µs. Using spin-echo technique the decoherence time T2’ was determined<br />

to be of the order of 500 µs. The presented results show the<br />

realization of a ’quantum register’ built of single neutral atoms for storing<br />

quantum information.<br />

[1] Y. Miroshnychenko et al., Optics Express [in print] [2] D. Schrader<br />

et al., in preparation<br />

Q 22.2 Di 14:00 Schellingstr. 3<br />

Finite size effects in entangled rings of qubits — •Tim Meyer,<br />

Uffe V. Poulsen, Kai Eckert, Maciej Lewenstein, and Dagmar<br />

Bruss — Universit”at Hannover<br />

We study translationally invariant rings of qubits with a finite number<br />

of sites N, and find the maximal nearest-neighbor entanglement for<br />

a fixed z component of the total spin. For small numbers of sites our<br />

results are analytical. The use of a linearized version of the concurrence<br />

allows us to relate the maximal concurrence to the ground state energy<br />

of an XXZ spin model, and to calculate it numerically for N¡25. We point<br />

out some interesting finite-size effects. Finally, we generalize our results<br />

beyond nearest neighbors.<br />

Q 22.3 Di 14:00 Schellingstr. 3<br />

Statistical mechanics of entanglement — •Jarek Korbicz, Florian<br />

Hulpke, and Maciej Lewenstein — Institut für Theoretische<br />

Physik, Universität Hannover, Appelstr. 2, 30167 Hannover, Germany<br />

We apply the methods of statistical mechanics to the study of entanglement.<br />

We consider the space of decompositions of a given density<br />

matrix. In this space we introduce a polynomial cost-function, minimized<br />

by decompositions composed entirely of projectors onto product vectors.<br />

We next assume that the number of terms in each decomposition is large<br />

and define an analog of a canonical partition function. We study it analytically<br />

and numerically for a family of Werner states of two qubits.<br />

Q 22.4 Di 14:00 Schellingstr. 3<br />

Multi-party entanglement detection in spin chains with simple<br />

measurements — •Geza Toth — Max Planck Institute for Quantum<br />

Optics,Theoretical Division,Hans-Kopfermann-Strasse 1., Garching,<br />

Germany D-85748<br />

It is discussed what the minimum requirements are for entanglement<br />

detection in a chain of spins, if the spins cannot be accessed individually.<br />

The methods presented detect entangled states close to a cluster<br />

state and a many-body singlet state, and might be viable for realization<br />

in optical lattices of two-state bosonic atoms. The entanglement criteria<br />

are based on entanglement witnesses, and also on the uncertainty of<br />

collective observables.<br />

Q 22.5 Di 14:00 Schellingstr. 3<br />

Towards integrated micro-optics on atom chips — •Albrecht<br />

Haase 1 , Thomas Fernholz 1 , Sönke Groth 1 , Christian Hock 1 ,<br />

Peter Horak 2 , Bruce Klappauf 2 , Michael Schwarz 1 , Alexander<br />

Stelzer 1 , Marco Wilzbach 1 , and Jörg Schmiedmayer 1<br />

— 1 Physikalisches Institut, Universität Heidelberg, 69120 Heidelberg<br />

— 2 Optoelectronics Research Centre, University of Southampton,<br />

Southampton SO17 1BJ, UK<br />

To develop the atom chip towards an universal tool for quantum information<br />

processing, we explore the possibility of integrating micro-optical<br />

components for the preparation, manipulation, and detection of atomic<br />

qubit states. As a promising technique we investigate in detail the feasibility<br />

of an on-chip optical fibre cavity. We describe fabrication, alignment,<br />

and first experiments and give an outlook on further integration steps.<br />

The experiment is funded by the Landesstiftung Baden-Württemberg<br />

and the EU (ACQP collaboration).<br />

Q 22.6 Di 14:00 Schellingstr. 3<br />

Time-bin entangled single photons from a cavity-QED source<br />

— •T. Wilk, T. Legero, M. Hennrich, A. Kuhn, and G. Rempe<br />

— Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, D-<br />

85748 Garching, Germany<br />

Entangled photons are an indispensable ingredient of many quantum<br />

information schemes. Most applications use polarisation entangled photons,<br />

while others employ time-bin entanglement [1]: a single-photon<br />

wave-packet is distributed over two distinct intervals which are separated<br />

in time. In contrast to former experiments, where the time-bin entanglement<br />

is realised by sending a single photon through a Mach-Zehnder<br />

interferometer with unbalanced arms, we here present a single-photon<br />

generation scheme that directly delivers such photons.<br />

The photons emerge from a cavity-QED source, where a single atom<br />

undergoes an adiabatic passage, driven by the ambient cavity and pumping<br />

laser pulses [2]. Any variation of the amplitude of the laser pulses<br />

affects the emission probability and has a direct impact on the shape<br />

of the single-photon wave-packets. Therefore arbitrary shaping of timebin<br />

entangled photons seems possible. We investigate whether the relative<br />

phase between the two time bins can be controlled by appropriately<br />

changing the phase of the driving laser. The degree and lifetime of a<br />

possible entanglement, can be determined by time-resolved two-photon<br />

interference [3].<br />

[1] Brendel et al. Phys. Rev. Lett. 82, 2594 (1999)<br />

[2] Kuhn et al. Phys. Rev. Lett. 89, 67901 (2002)<br />

[3] Legero et al. Appl. Phys. B77, 797 (2003)<br />

Q 22.7 Di 14:00 Schellingstr. 3<br />

Creating and Measuring a coherent superposition in metastable<br />

Neon — •Ulrich Schneider, Frank Vewinger, Manfred<br />

Heinz, Ruth Garcia Fernandez, and Klaas Bergmann — Fachbereich<br />

Physik TU Kaiserslautern<br />

We demonstrate a technique, suitable for neutral atoms in an atomic<br />

beam, that allows the preparation of a superposition state in an efficient<br />

and robust way with a predetermined relative phase. For the preparation<br />

we use the tripod-STIRAP scheme [1] applied to the creation of a coherent<br />

superposition of two mj-states of the metastable state 3 P2 of Neon<br />

atoms [2]. We also measure the relative phase of the two mj-components<br />

of the superposition state about 16mm downstream of the preparation<br />

region. The measurement is based on the mapping of the relative phase<br />

into the population of the excited state as a function of the polarization<br />

angle of a probe laser. We report data concerning the superposition of<br />

the pairs of levels mj = +1 and mj = −1 as well as mj = −2 and mj = 0.<br />

[1]:R.Unanyan et.al. Opt.Comm. 155, 144-154<br />

[2]:F.Vewinger et al, PRL 91, 213001<br />

Q 22.8 Di 14:00 Schellingstr. 3<br />

Decoherence suppression in collective quantum memories —<br />

•C. Mewes, R.G. Unanyan, and M Fleischhauer — Fachbereich<br />

Physik, Universität Kaiserslautern, 67653, Kaiserslautern, Germany<br />

An important question when discussing the application of many-atom<br />

systems to quantum memory is sensitivity to errors and the question how<br />

to suppress decoherence mechanisms. It is shown that photonic qubits<br />

stored in collective atomic excitations can be protected from decoherence<br />

101

Hurra! Ihre Datei wurde hochgeladen und ist bereit für die Veröffentlichung.

Erfolgreich gespeichert!

Leider ist etwas schief gelaufen!