16.01.2013 Aufrufe

aktualisiertes pdf - DPG-Tagungen

aktualisiertes pdf - DPG-Tagungen

aktualisiertes pdf - DPG-Tagungen

MEHR ANZEIGEN
WENIGER ANZEIGEN

Erfolgreiche ePaper selbst erstellen

Machen Sie aus Ihren PDF Publikationen ein blätterbares Flipbook mit unserer einzigartigen Google optimierten e-Paper Software.

[3] D. Schrader et al., Appl. Phys B 73, 819 (2001)<br />

Q 38.9 Do 14:00 Schellingstr. 3<br />

Collective Atomic Motion in an Optical Lattice formed inside a<br />

High Finesse Cavity — •Julian Klinner, Boris Nagorny, Thilo<br />

Elsässer, Malik Lindholdt, and Andreas Hemmerich — Institut<br />

für Laserphysik, Universität Hamburg, Luruper Chaussee 149, 22761<br />

Hamburg<br />

We discuss non-linear light field dynamics and collective atomic motion<br />

in an optical lattice formed inside a high finesse resonator. Our cavity<br />

with a finesse of 180.000 operates in the regime of strong coupling,<br />

where the light shift per photon times the number of trapped atoms<br />

exceeds the cavity bandwidth. We present a theoretical model, which<br />

accurately reproduces our observations of dispersive optical bistability,<br />

self-organisation of the intra-cavity field and self-induced radial breathing<br />

oscillations of the trapped atoms.<br />

Q 38.10 Do 14:00 Schellingstr. 3<br />

Atom Optics and Quantum Information Processing with Atoms<br />

in Optical Micro-Structures — •Andre Lengwenus 1 , Tobias<br />

Müther 1 , Jonas Ries 1 , Falk Scharnberg 1,2 , Niels Ubbelohde 1 ,<br />

Michael Volk 1 , Wolfgang Ertmer 1 , and Gerhard Birkl 1 —<br />

1 Institut für Quantenoptik, Universität Hannover, Welfengarten 1, D-<br />

30167 Hannover, Germany — 2 Swinburne University of Technology, Melbourne,<br />

Australia<br />

A new direction in the field of atom optics, atom interferometry, and<br />

neutral-atom quantum information processing can be based on the use<br />

of micro-fabricated optical elements. With these elements versatile and<br />

integrated atom optical devices can be created in a compact fashion. This<br />

approach opens the possibility to scale, parallelize, and miniaturize atom<br />

optics for investigations in fundamental research and application.<br />

For the implementation of new approaches for quantum information<br />

processing, we use arrays of micro-lenses to create a two-dimensional<br />

system of atom samples in dipole traps that can serve as the carriers<br />

for the qubits. Micro-optical elements are also used to generate<br />

waveguides, beam splitters, and interferometer-type structures for guided<br />

atoms. These systems present the atom-optical equivalents to the respective<br />

structures in integrated light optics.<br />

In the future, the application of micro-optics for the optical manipulation<br />

of atomic systems is expected to have a significant impact on<br />

quantum optics, quantum information processing, and matter wave optics.<br />

We report on the progress of our work.<br />

Q 38.11 Do 14:00 Schellingstr. 3<br />

Transverse confinement effects in stochastic cooling of trapped<br />

atoms. — •Denis Ivanov and Sascha Wallentowitz — Fachbereich<br />

Physik, Universität Rostock, Universitätsplatz 3, 18051 Rostock, Germany.<br />

The operation of stochastic cooling of trapped atoms [1] has been studied<br />

for a 3D isotropic harmonic potential. The change of energy due to a<br />

single cooling step has been obtained in terms of quantum-statistical averages.<br />

Contributions in the motion parallel to the control-laser beam direction<br />

contain the back-action noise due the employed measurement and<br />

noise due to fluctuations of the number of atoms in the control beam [2].<br />

Furthermore, having a control-laser with finite beam-waist, an indirect<br />

measurement of the transverse atomic coordinate with the corresponding<br />

reduction of the quantum state are carried out during the cooling step.<br />

This quantum effect introduces additional noise in the kinetic energy and<br />

depends both on the size and on the shape of the beam-waist [3]. In the<br />

case, where the thermal wavelength of atoms is smaller than the average<br />

interatomic distance, the indistinguishability of atoms can be discarded<br />

and the energy change is expressed in terms of geometrical characteristics<br />

and temperature. Given these results, a boundary between cooling and<br />

heating can be established in dependence on geometrical parameters.<br />

[1] M.G. Raizen et al., Phys. Rev. A 58, 4757 (1998).<br />

[2] D. Ivanov et al., Phys. Rev. A 67, 061401(R) (2003).<br />

[3] D. Ivanov and S. Wallentowitz, J. Opt. B (submitted).<br />

Q 38.12 Do 14:00 Schellingstr. 3<br />

Optical Trapping and Cooling of Fermionic and Bosonic Magnesium<br />

— •Albane Douillet, Tanja E. Mehlstäubler, Nils<br />

Rehbein, Ernst M. Rasel, and Wolfgang Ertmer — Institut für<br />

Quantenoptik, Universität Hannover, Welfengarten 1, 30167 Hannover.<br />

We report on the status of our new experimental apparatus for precision<br />

spectroscopy of ultra cold fermionic and bosonic magnesium atoms.<br />

121<br />

Both isotopes are captured from a slowed thermal magnesium beam and<br />

pre-cooled in a magneto-optical trap (MOT). Up to 10 8 atoms can be<br />

trapped with 60 mW light tuned to the transition 3 1 S0 → 3 1 P1 at<br />

285 nm. Time-of-flight measurements indicate atomic temperatures of<br />

about 3 mK, slightly above the Doppler limit (1.9 mK). The experiment<br />

will explore promising avenues towards the µKelvin regime with<br />

magnesium, such as quench cooling, which was recently very successfully<br />

applied for calcium. The need for effective cooling methods was demonstrated<br />

by recent measurements with our Ramsey-Borde interferometer.<br />

The residual atomic motion was one of the major limitations for the<br />

achieved resolutions of about 290 Hz. For the interferometer we are developing<br />

a frequency-doubled Nd:YVO4-disc laser, which provides about<br />

1 W at 914 nm (TEM00).<br />

Q 38.13 Do 14:00 Schellingstr. 3<br />

Tweezing Cold Atoms with Lasers — •Bernd Mohring 1 , Marc<br />

Bienert 1 , Florian Haug 1 , Giovanna Morigi 1 , Mark G. Raizen 2 ,<br />

and Wolfgang P. Schleich 1 — 1 Abteilung für Quantenphysik, Universität<br />

Ulm, 89069 Ulm — 2 Department of Physics, The University of<br />

Texas, Austin, Texas 78712-1081, USA<br />

Quantum tweezers open a promising way to deterministically and coherently<br />

extract a well-defined number of atoms out of a Bose-Einstein<br />

condensate (BEC). We propose a quantum tweezers scheme based on<br />

laser pulses, that allows to coherently transfer atoms from a condensate<br />

into a quantum state of a tight confining dipole trap. The BEC is constituted<br />

by atoms in the hyperfine state |g〉, which is magnetically trapped.<br />

The atoms are transferred into the dipole trap by coupling the state |g〉<br />

to another hyperfine state |e〉, which is confined by the dipole trap. The<br />

coupling is achieved by an adiabatic transfer with laser pulses, of which<br />

two realizations are presented: The adiabatic passage and the “Stark<br />

chirped rapid adiabatic passage” (SCRAP).<br />

Q 38.14 Do 14:00 Schellingstr. 3<br />

Photoionisation von Indium — •Ch. Schwedes, P. Eckle, J. von<br />

Zanthier, A.Yu. Nevsky und H. Walther — MPI f. Quantenoptik,<br />

Hans-Kopfermann-Str. 1, 85748 Garching<br />

Ein einzelnes In + -Ion, gespeichert und lasergekühlt in einer RF-Falle<br />

wird als ein aussichtsreicher Kandidat im Hinblick auf ein optisches Frequenznormal<br />

untersucht [1]. Um eine angestrebte Genauigkeit in der<br />

Spektroskopie von 10 −18 zu erreichen, sind äußerst stabile Bedingungen<br />

der Speicherung notwendig. Die Ionisation von neutralem In durch das<br />

übliche Elektronenstoßverfahren führt jedoch leicht zu zeitlich variierenden<br />

elektrostatischen Aufladungen von Isolatoren in der Fallenregion, die<br />

eine kontinuierliche Spektroskopie erschweren. Dies kann durch Photoionisation<br />

vermieden werden.<br />

Aufgrund der günstigen Niveaustruktur von In, genügt zur effizienten<br />

Zwei-Photonen Ionisation ein einzelner Laser bei 410 nm. Dieser<br />

regt vom Grundzustand zunächst resonant in ein Zwischenniveau an und<br />

von da aus effizient in autoionionisierende diskrete Zustände oberhalb<br />

der Ionisierungsschwelle. Die dabei im Vergleich zur Stoßionisation um<br />

zwei Größenordnungen gesteigerte Ionisierungseffizienz vermindert eine<br />

Bedampfung der Fallenelektroden mit In drastisch, wodurch Kontaktpotentiale,<br />

die zu Heizung des Ions führen können, verringert werden.<br />

Untersuchungen der Effizienz dieses Verfahrens im Vergleich zur Stoßionisation<br />

und zu anderen Photoionisationsverfahren werden vorgestellt.<br />

[1] Becker et al., Phys. Rev. A 63, 051082 (2001).<br />

Q 38.15 Do 14:00 Schellingstr. 3<br />

Laser Spectroscopy and Laser Cooling of Indium — •Bernhard<br />

Klöter, Ruby dela Torre, Jiayu Wang, Dietmar Haubrich,<br />

Ulrich Rasbach, and Dieter Meschede — Institut für Angewandte<br />

Physik der Universität Bonn<br />

Indium is an interesting candidate for Atomic Nanofabrication (ANF)<br />

because it can directly be deposited onto a substrate. The high deposition<br />

rates needed for ANF can only be achieved with a laser cooled thermal<br />

Indium atomic beam, which had not been established before.<br />

We first systematically investigated laser frequency stabilization<br />

schemes for all five frequencies involved in the cooling process.<br />

The poster will present our results on saturation and polarization spectroscopy<br />

of Indium in an all sapphire cell at 410 nm and/or 451 nm, the<br />

laser frequency locking schemes and the different laser cooling methods.

Hurra! Ihre Datei wurde hochgeladen und ist bereit für die Veröffentlichung.

Erfolgreich gespeichert!

Leider ist etwas schief gelaufen!