16.01.2013 Aufrufe

aktualisiertes pdf - DPG-Tagungen

aktualisiertes pdf - DPG-Tagungen

aktualisiertes pdf - DPG-Tagungen

MEHR ANZEIGEN
WENIGER ANZEIGEN

Sie wollen auch ein ePaper? Erhöhen Sie die Reichweite Ihrer Titel.

YUMPU macht aus Druck-PDFs automatisch weboptimierte ePaper, die Google liebt.

tierte Atomen/sec mit einer Kollimation besser als 0.5vrecoil. Die örtliche<br />

Auflösung des Atomdetektors beträgt ≈ 50 µm. Wir präsentieren auch<br />

die Ergebnisse zur Demonstration von nicht-zerfließenden Wellenpaketen,<br />

wie sie von Efremov et al. [1] vorhergesagt wurden. Die experimentellen<br />

Ergebnisse zeigen sehr gute Übereinstimmung mit den theoretischen<br />

Vorhersagen. Wir konnten durch Einsetzen einer interferometrischen Methode<br />

nicht nur den Absolutbetrag der Wellenfunktion messen, sondern<br />

auch Information über die quantenmechanische Phase deduzieren. Im<br />

Speziellen werden wir diese Methode zur Phasenrekonstruktion im Detail<br />

diskutieren.<br />

[1] M.A. Efremov et al., Laser Phys., 13, 995 (2003); JETP, 97, 522<br />

(2003).<br />

Q 36.6 Do 14:00 Schellingstr. 3<br />

EPR-Paare von Atomen aus der Photodissoziation von Molekülen<br />

— •Alexander I. Lvovsky und Björn Brezger — Fachbereich<br />

Physik M559, Universität Konstanz<br />

Einstein, Podolsky und Rosen erkannten 1935 die Paradoxa, die ein<br />

” EPR-Zustand“ mit idealer Orts- und Impulsverschränkung zwischen<br />

zwei Teilchen aufwirft. Wir schlagen ein experimentelles Schema vor, wie<br />

eine gute Annäherung an diesen Zustand erstmals mit massiven Teilchen<br />

realisiert werden kann. Hierzu sollen Alkalidimere zunächst in einem Molekülstrahl<br />

transversal kohärent präpariert und dann in einem stimulierten<br />

Ramanprozess photodissoziiert werden. Die Transversalbewegung der<br />

daraus hervorgehenden Atompaare ist verschränkt, was durch koinzidente<br />

Detektion eindeutig nachgewiesen werden kann. Dieses bisher nicht<br />

experimentell erforschte System bietet einen neuen Zugang zur Physik<br />

verschränkter Systeme und ergänzt aufgrund seiner grundlegend anderen<br />

Eigenschaften und der deutlich stärkeren Verschränkung die bisher<br />

mit Photonenpaaren gemachten Experimente.<br />

Q 36.7 Do 14:00 Schellingstr. 3<br />

Resonance fluorescence of cold trapped atoms — •Wolfgang<br />

Merkel, Marc Bienert, and Giovanna Morigi — Abteilung für<br />

Quantenphysik, Universität Ulm, D-89069 Ulm<br />

We investigate theoretically the spectrum of resonance fluorescence of<br />

a cold trapped atom in the final stage of the laser cooling. We focus<br />

on the features due to the mechanical effects of light in the limit where<br />

the size of the atomic wavepacket is much smaller than the laser wavelength.<br />

In particular, we discuss how these spectral features depend on<br />

the internal configuration of the atom. The results obtained within a full<br />

quantum mechanical model are compared with the limit when the motion<br />

is treated semi-classically.<br />

Q 36.8 Do 14:00 Schellingstr. 3<br />

Phase-dependent nonlinear optics with atoms in a diamond configuration<br />

of levels — •Sarah Schröder 1 , Giovanna Morigi 1 ,<br />

and Sonja Franke-Arnold 2 — 1 Abteilung für Quantenphysik, Universität<br />

Ulm, Germany — 2 Department of Physics, University of Strathclyde,<br />

Glasgow, United Kingdom<br />

We analyse the propagation of light in a medium of atoms with a diamond<br />

configuration of levels. This atomic configuration is characterised<br />

by a closed cycle of radiation-induced transitions, hence its dynamics and<br />

steady-state depend critically on the relative phase between the driving<br />

lasers [1]. In fact the relative phase can give rise to peculiar interference<br />

effects, making the medium either transparent or opaque. We present<br />

an analytical and numerical study of the propagation dynamics of the<br />

light amplitude and phase as a function of the initial laser parameters<br />

for this kind of medium, and compare our results with the dynamics of<br />

light propagation in a medium of double-Λ atoms [2].<br />

[1] G. Morigi, S. Franke-Arnold and G.-L. Oppo,<br />

Phys. Rev. A 66, 053409 (2002)<br />

tical lattice. For complete transfer we apply a sequence of narrow–band<br />

laser pulses in a Raman configuration. We develop an idealized analytical<br />

model and also perform a numerical analysis which accounts for the<br />

actual vibrational structure of the optical lattice.<br />

Q 36.10 Do 14:00 Schellingstr. 3<br />

Laser-based approach to measuring quantum arrival times —<br />

•Dirk Seidel and Gerhard C. Hegerfeldt — Tammannstrasse 1,<br />

37077 Göttingen, Germany<br />

We investigate a new operational approach to measuring the quantum<br />

arrival-time distribution of a spread-out particle in a spatial region. The<br />

model bases on illuminating the region with a laser and detecting the first<br />

fluorescence photon produced by the excitation of the atom and subsequent<br />

decay. The resulting temporal distribution is explicitly calculated<br />

for the one-dimensional case. We show that by means of a deconvolution<br />

one obtains the well known quantum mechanical probability flux<br />

[1], whereas by a normalization of the corresponding temporal operator<br />

function the axiomatic arrival-time distribution of Kijowski is recovered<br />

[2].<br />

[1] J.A. Damborenea, I.L. Egusquiza, G.C. Hegerfeldt, J.G. Muga, Phys.<br />

Rev. A 66, 052104 (2002)<br />

[2] G.C. Hegerfeldt, D. Seidel, J.G. Muga, Phys. Rev. A 68, 022111 (2003)<br />

Q 36.11 Do 14:00 Schellingstr. 3<br />

Wigner functions of s-waves. — •Alexander Wolf 1 , Jens<br />

Peder Dahl 2 , Sandor Varro 3 , and Wolfgang Peter Schleich 1<br />

— 1 Abteilung für Quantenphysik, Universität Ulm, D-89069 Ulm,<br />

Germany — 2 Chemical Physics, Department of Chemistry,Technical<br />

University of Denmark, DTU 207, DK-2800 Kgs. Lyngby, Denmark<br />

— 3 Research Institute for Solid State Physics and Optics, H-1525<br />

Budapest, PO Box 49, Hungary<br />

We derive explicit expressions for the Wigner function of wave functions<br />

in D dimensions corresponding to vanishing angular momentum,<br />

that is of a s-wave. The Wigner function of such states depends on three<br />

variables, the absolut value of the D-dimensional position and momentum<br />

vectors and the angle between them. We illustrate these expression<br />

by calculationg the Wigner function for a D-dimensional Gaussian, a<br />

shell wave function and the energy eigenfunction of a free partical.<br />

Q 36.12 Do 14:00 Schellingstr. 3<br />

Microresonators in tapered fibers — •Florian Warken, Yann<br />

Louyer, Dieter Meschede, and Arno Rauschenbeutel — Institut<br />

für Angewandte Physik, Wegelerstr. 8, 53115 Bonn<br />

We aim to realize high Q microresonators in structured tapered optical<br />

fibers. The resonators have a highly prolate shape. They sustain whispering<br />

gallery modes which exhibit, in contrast to the equatorial modes<br />

commonly used in silica microsphere resonators, two spatially well separated<br />

caustics with a resonantly enhanced field strength. Different modes<br />

can be selectively excited by coupling light in and out of the resonator<br />

at the respective caustic. This will be accomplished by means of auxiliary<br />

tapered optical fiber couplers. Moreover, the free spectral range of<br />

our so-called “pendulum modes” is significantly smaller than for equatorial<br />

whispering gallery modes. Therefore, a tuning of the pendulum<br />

modes over one free spectral range can easily be achieved, e. g. by strain<br />

tuning. The advantageous mode geometry of the resonators, in combination<br />

with their tunability, opens interesting perspectives for confining<br />

and controlling light. In particular, in the framework of cavity quantum<br />

electrodynamics, a deterministic coupling of laser-trapped atoms to the<br />

pendulum mode is conceivable.<br />

[2] E. A. Korsunsky and D. V. Kosachiov,<br />

Phys. Rev. A 60, 4996 (1999)<br />

Q 36.9 Do 14:00 Schellingstr. 3<br />

Transport of Atoms in Optical Lattices — •Wolfgang Merkel1 ,<br />

Holger Mack1 , Matthias Freyberger1 , Victor V. Kozlov1 ,<br />

Bruce W. Shore2 , and Wolfgang P. Schleich1 — 1Abteilung für<br />

Quantenphysik, Universität Ulm, D-89069 Ulm — 2 Q 36.13 Do 14:00 Schellingstr. 3<br />

One- and N-atom lasers — •M. Hennrich, A. Kuhn, and G.<br />

Rempe — Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-<br />

Str. 1, 85748 Garching, Germany<br />

The one-atom laser is the quantum-mechanical limit of a classical laser.<br />

It is very appealing to examine the transition between these two regimes.<br />

Here we describe a simple death-birth rate-equation model [1] of an atomcavity<br />

system with fixed atom number N. The simplicity of this model<br />

allows us to examine the transition from the microscopic one-atom to the<br />

618 Escondido Circle, mesoscopic many-atom system.<br />

Livermore CA 94550<br />

Once placed in an optical cavity, the atoms can interact via the com-<br />

We investigate the laser–induced transport of a single atom from one<br />

mon mode. The interaction is negligible as long as the photons emitted<br />

potential well to the neighbor potential well in a far off–resonance op-<br />

into the cavity decay faster than they are reabsorbed by another atom.<br />

118

Hurra! Ihre Datei wurde hochgeladen und ist bereit für die Veröffentlichung.

Erfolgreich gespeichert!

Leider ist etwas schief gelaufen!