16.01.2013 Aufrufe

aktualisiertes pdf - DPG-Tagungen

aktualisiertes pdf - DPG-Tagungen

aktualisiertes pdf - DPG-Tagungen

MEHR ANZEIGEN
WENIGER ANZEIGEN

Sie wollen auch ein ePaper? Erhöhen Sie die Reichweite Ihrer Titel.

YUMPU macht aus Druck-PDFs automatisch weboptimierte ePaper, die Google liebt.

SYND 2 Sitzung 2<br />

Zeit: Donnerstag 16:30–18:30 Raum: HS 332<br />

Hauptvortrag SYND 2.1 Do 16:30 HS 332<br />

TDDFT/MM Simulations of Photoactive Proteins —<br />

•Ursula Roethlisberger — Institute of Molecular and<br />

Biological Chemistry, EPFL, 1015 Lausanne, Switzerland<br />

We use a hierarchical mixed quantum mechanical/ molecular<br />

mechanical (QM/MM) simulations to study photoreactions<br />

in biological systems. In this approach, the photoactive<br />

component is treated at the level of gradient-corrected timedependent<br />

density functional theory (TDDFT) whereas the<br />

surrounding biomolecule and the solvent is described via an<br />

empirical force field. We will present results related to the<br />

photoisomerization in bovine rhodopsin and photoactive yellow<br />

protein.<br />

Hauptvortrag SYND 2.2 Do 17:00 HS 332<br />

Helix-Coil Dynamics of Short Peptides — •Feng Gai<br />

— Department of Chemistry, University of Pennsylvanian,<br />

PA 19104, USA<br />

Although the helix-coil transition represents the simplest<br />

scenario in protein folding, the details of its mechanism are<br />

not fully understood. Using laser induced temperature jump<br />

infrared method, we have studied the helix-coil transition of<br />

a series of monomeric peptides. Our results indicate that indeed<br />

the dynamics of the helix-coil transition are complex<br />

and depend on many factors, such as the initial and final<br />

temperature, the capping group, sequence, as well as chain<br />

length. Details of these studies will be discussed.<br />

Hauptvortrag SYND 2.3 Do 17:30 HS 332<br />

Single Molecule Mechanics of Proteins — •Matthias<br />

Rief — Lehrstuhl fuer Biophysik E22, Physikdepartment<br />

der TU Muenchen, 85748 Garching<br />

The mechanical properties of cytoskeletal proteins and<br />

molecular motors are important for their function in vivo.<br />

However, this information has become accessible only recently<br />

through the invention of single molecule techniques<br />

like atomic force microscopy (AFM). We have used AFM<br />

196<br />

based force spectroscopy to investigate the mechanical response<br />

of the coiled-coil domains of myosin II and the actin<br />

cross-linking protein Ddfilamin. We find that the myosin<br />

coiled-coil is a highly elastic protein structure that undergoes<br />

an unfolding/refolding transition at 25 pN. Unlike all<br />

other proteins investigated so far this transition occurs in<br />

equilibrium. These measurements show that a coiled-cloil is<br />

able to produce forces during folding. Ddfilamin is an actin<br />

crosslinking protein from dictyostelium discoideum. Using<br />

single molecule unfolding experiments we show that one of<br />

the immunoglobulin domains of this protein unfolds at low<br />

forces via a stable intermediate. We have used amino-acid<br />

inserts into the loops of this domain to map the structure of<br />

this intermediate. We show evidence that the intermediate is<br />

also populated during folding of this domain which increases<br />

the refolding rates drastically. Low unfolding forces together<br />

with fast refolding kinetics suggest an in-vivo role for this<br />

domain as a reversibly extensible element under mechanical<br />

strain.<br />

Hauptvortrag SYND 2.4 Do 18:00 HS 332<br />

Molecular dynamics simulation of single molecule<br />

force probe experiments — •Helmut Grubmüller<br />

— Theoretical and Computational Biophysics Department,<br />

Max-Planck-Institute for Biophysical Chemistry, Am Fassberg<br />

11, 37077 G¨ttingen, GERMANY<br />

Computer simulations of the atomistic dynamics induced<br />

by force probe experiments like atomic force microscopy or<br />

optical tweezers can provide a microscopic picture of these<br />

processes. Typically, however, the experimental and simulation<br />

time scales differ by orders of magnitude. Therefore, in<br />

order to enable comparison with measured forces, computed<br />

forces have to be rescaled to the much slower experimental<br />

time scale. To this aim, we present a non-equilibrium statistical<br />

mechanis approach and apply it to force probe simulation<br />

on biomolecules.

Hurra! Ihre Datei wurde hochgeladen und ist bereit für die Veröffentlichung.

Erfolgreich gespeichert!

Leider ist etwas schief gelaufen!