16.01.2013 Aufrufe

aktualisiertes pdf - DPG-Tagungen

aktualisiertes pdf - DPG-Tagungen

aktualisiertes pdf - DPG-Tagungen

MEHR ANZEIGEN
WENIGER ANZEIGEN

Erfolgreiche ePaper selbst erstellen

Machen Sie aus Ihren PDF Publikationen ein blätterbares Flipbook mit unserer einzigartigen Google optimierten e-Paper Software.

three-dimensional imaging of samples. Here we present a confocal setup<br />

for fluorescence lifetime measurements using up-conversion technique<br />

in the femtosecond time range. The promising abilities of the method<br />

Q 21 Poster Quantengase<br />

are shown by investigations of the ultrafast S2 relaxation dynamics of<br />

solutions of the dye malachite green (about 250 fs).<br />

Zeit: Dienstag 14:00–16:00 Raum: Schellingstr. 3<br />

Q 21.1 Di 14:00 Schellingstr. 3<br />

Degenerate fermionic potassium in an optical lattice —<br />

•Henning Moritz, Thilo Stöferle, Christian Schori, Michael<br />

Köhl, and Tilman Esslinger — Institut für Quantenelektronik,<br />

ETH Zürich, CH-8093 Zürich<br />

For quantum degenerate fermions a variety of fascinating quantum<br />

phenomena, such as BCS-type superfluidity, are theoretically predicted<br />

to occur. The BCS-transition temperature in a lattice is expected to be<br />

significantly higher than in an harmonic trap due to the increased interaction<br />

at the individual lattice sites [1].<br />

In our recent experiments with Rubidium in an optical lattice we have<br />

realised the first truly one-dimensional Bose-Gas [2] and studied the transition<br />

from a strongly interacting superfluid to a Mott insulator in one<br />

dimension [3]. We have managed to sympathetically cool fermionic Potassium<br />

40 to quantum degeneracy in the same machine. The poster will<br />

report on the experiments with these atoms in the optical lattice.<br />

[1] W. Hofstetter et al., Phys. Rev. Lett. 89, 220407 (2002)<br />

[2] H. Moritz et al., Phys. Rev. Lett. in press<br />

[3] T. Stöferle et al., preprint 2003<br />

Q 21.2 Di 14:00 Schellingstr. 3<br />

Mixtures of Rubidium and Lithium in the degenerate Regime<br />

— •Tobias Donner, Christian Silber, Sebastian Günther,<br />

and Claus Zimmermann — Physikalisches Institut der Universität<br />

Tübingen, Auf der Morgenstelle 14, 72076 Tübingen<br />

We prepare an experiment with mixtures of Lithium and Rubidium<br />

quantum gases. Rubidium is used as cooling agent for both Lithium isotopes.<br />

Heteronuclear photoassociation will be studied for 6Li-87Rb, 7Li-<br />

87Rb, and 6Li-7Li [1] in the degenerate regime. Another topic will be<br />

molecule formation schemes with two photon Raman spectroscopy [2].<br />

The mixture is stored in a new type of a miniaturized magnetic trap that<br />

allows for studying dimensionality effects for Bose gases as well as for<br />

Fermi gases. We describe the apparatus and its experimental perspectives.<br />

[1] U. Schlöder, C. Silber, T. Deuschle, and C. Zimmermann, Phys.<br />

Rev. A 66, 061403 (R) (2002)<br />

[2] U. Schlöder, T. Deuschle, C. Silber, and C. Zimmermann, accepted<br />

for publication in Phys. Rev. A<br />

Q 21.3 Di 14:00 Schellingstr. 3<br />

An Experiment on Quantum-Degenerate Fermi-Bose Mixtures<br />

in 3D Optical Lattices — •Silke Ospelkaus-Schwarzer, Christian<br />

Ospelkaus, Ralf Dinter, Jürgen Fuchs, Marlon Nakat,<br />

Klaus Sengstock, and Kai Bongs — Institut für Laser-Physik, Universität<br />

Hamburg<br />

We present an experiment on a quantum-degenerate mixture of<br />

Fermionic 40 K and Bosonic 87 Rb atoms which is currently being set up in<br />

Hamburg. The apparatus is based on a two-species 2D-/3D-MOT setup<br />

and an optimized Ioffe-type magnetic trap. Our setup is designed for experiments<br />

in deep three-dimensional optical lattices and promise to be<br />

a versatile model system for solid state theories. Projected experiments<br />

cover single-particle and collective excitations, fermion correlations and<br />

investigations on the possibility of observing a BCS-type phase transition<br />

in a 3D-optical lattice. We present first experimental results and discuss<br />

the planned experiments.<br />

Q 21.4 Di 14:00 Schellingstr. 3<br />

Atomic Bose-Fermi mixtures in an optical lattice — •Fehrmann<br />

Henning, Maciej Lewenstein, Luis Santos und Mikhail Baranov<br />

— ITP Uni Hannover<br />

A mixture of ultra-cold bosons and fermions placed in an optical lattice<br />

constitutes a novel kind of quantum gas and leads to phenomena, which<br />

so far have been discussed neither in atomic physics nor in condensed<br />

matter physics.<br />

We discuss the phase diagram at low temperatures, and in the limit of<br />

strong atom-atom interactions. We predict the existence of quantum pha-<br />

99<br />

ses that involve pairing of fermions with one or more bosons, or bosonic<br />

holes respectively. The resulting composite fermions may form, depending<br />

on the system parameters, a normal Fermi liquid, a density wave, a<br />

super-fluid liquid, or an insulator with fermionic domains.<br />

Furthermore we obtain the analytic form of the phase boundaries separating<br />

these composite fermion phases from the bosonic super-fluid which<br />

coexists with a Fermi liquid.<br />

We compare the results with numerical simulations and discuss their<br />

validity and relevance for current experiments.<br />

Q 21.5 Di 14:00 Schellingstr. 3<br />

Matter wave optics with Bose-Einstein condensates on atom<br />

chips — •Stephan Wildermuth 1 , Peter Krüger 1 , Sebastian<br />

Hofferberth 1 , Mauritz Andersson 1 , Sönke Groth 1,2 , Elmar<br />

Haller 1 , Leonardo Della Pietra 1 , Mihael Brajdic 1 , Israel<br />

Bar-Joseph 2 , and Jörg Schmiedmayer 1 — 1 Physikalisches Institut,<br />

Universität Heidelberg, 69120 Heidelberg — 2 Weizmann Institut, Rehovot,<br />

Israel<br />

Atom chips are built by structuring a conducting layer evaporated on<br />

a substrate. By charging theses structures and/or by passing currents<br />

through them, micropotentials for neutral atoms are formed that can be<br />

used for the controlled manipulation of ultra-cold atomic clouds.<br />

On this poster, we present a selection of possible trapping and guiding<br />

geometries. The flexibility of the atom chip is demonstrated by cooling<br />

atoms to the Bose-condensed phase (BEC) in very different traps.<br />

We have integrated matter wave beam splitters and interferometers on<br />

our atom chip in order to investigate the coherence properties of various<br />

atom-optical tools. Recent progress in the experiments will be reported<br />

as well as future steps towards the realization of 1 and 2-qubit manipulation.<br />

Q 21.6 Di 14:00 Schellingstr. 3<br />

Miniaturisierte Atomuhren und Interferometer in Mikrochip-<br />

Fallen — •Philipp Treutlein 1 , Tilo Steinmetz 1 , Peter<br />

Hommelhoff 1,2 , Theodor W. Hänsch 1 und Jakob Reichel 1<br />

— 1 Max-Planck-Institut für Quantenoptik und Sektion Physik der<br />

Ludwig-Maximilians-Universität, Schellingstr. 4, 80799 München,<br />

Germany — 2 Present address: Varian Physics 220, Stanford University,<br />

Stanford, CA 94305, U.S.A.<br />

Interne Zustände von neutralen Atomen in magnetischen Mikrochip-<br />

Fallen weisen lange Kohärenzzeiten auf [1]. Dies ermöglicht die Realisierung<br />

einer Atomuhr mit Atomen in der Mikrofalle. Dazu erzeugen<br />

wir Superpositionen der Hyperfeinzustände |F = 1, mF = −1〉<br />

und |F = 2, mF = 1〉 des Grundzustands von 87 Rb. Mittels Ramsey-<br />

Spektroskopie messen wir die Stabilität der Übergangsfrequenz zwischen<br />

diesen Zuständen. Unsere Messungen zeigen, daß eine portable, miniaturisierte<br />

Atomuhr mit einer relativen Stabilität von ∼ 10 −13 τ −1/2 / √ Hz<br />

realisierbar ist.<br />

In einem zweiten Experiment untersuchen wir kohärente<br />

Überlagerungen von externen Zuständen der Atome in der Mikrofalle.<br />

Dazu wird ein Bose-Einstein Kondensat in einem magnetischen<br />

Doppelmuldenpotential präpariert. Durch eine Barriere variabler Höhe<br />

zwischen den beiden Potentialmulden soll das Kondensat kohärent<br />

aufgespalten und wieder vereinigt werden. Wir präsentieren den<br />

aktuellen Stand dieses Experiments zur Interferometrie mit gefangenen<br />

Atomen.<br />

[1] Vortrag von Philipp Treutlein<br />

Q 21.7 Di 14:00 Schellingstr. 3<br />

Tunnelkontakte für Bose-Einstein-Kondensate in Mikrofallen<br />

— •Christian Trück, Andreas Günther, Sebastian Kraft,<br />

Claus Zimmermann und József Fortágh — Physikalisches Institut<br />

der Universität Tübingen, Auf der Morgenstelle 14, 72076 Tübingen<br />

Tunnelexperimente mit Bose-Einstein-Kondensaten erfordern eine<br />

präzise Kontrolle von dünnen Potentialbarrieren. Dies ist entweder mit<br />

optischen Gittern möglich oder mit Hilfe von elektrischen und magneti-

Hurra! Ihre Datei wurde hochgeladen und ist bereit für die Veröffentlichung.

Erfolgreich gespeichert!

Leider ist etwas schief gelaufen!