16.01.2013 Aufrufe

aktualisiertes pdf - DPG-Tagungen

aktualisiertes pdf - DPG-Tagungen

aktualisiertes pdf - DPG-Tagungen

MEHR ANZEIGEN
WENIGER ANZEIGEN

Sie wollen auch ein ePaper? Erhöhen Sie die Reichweite Ihrer Titel.

YUMPU macht aus Druck-PDFs automatisch weboptimierte ePaper, die Google liebt.

Q 22.15 Di 14:00 Schellingstr. 3<br />

Simulation of Quantum Computations by using Maple —<br />

•Thomas Radtke and Stephan Fritzsche — Universität Kassel,<br />

34281 Kassel, Germany<br />

During the last years, the topics of quantum information and computation<br />

have attracted a lot of interest. However, apart from the great<br />

potential of their applications, they gave rise to a large number of theoretical<br />

and experimental questions which still need to be resolved. Popular<br />

examples of quantum algorithms like the well-known factorization algorithm<br />

for prime numbers by Peter Shor may give a first impression of<br />

what quantum computation might be able to do in the future [1].<br />

But for the further analysis of algorithm capabilities and their efficiency,<br />

new tools are needed. That is why several simulators for quantum<br />

computations have been developed in the past. In order to improve the<br />

flexibility of user interaction, we recently started to develop our Feynman<br />

program within the framework of Maple. At present, it consists<br />

of a set of procedures which offer symbolic and numeric evaluation and<br />

manipulation of quantum bits, quantum registers and matrix operators.<br />

For the future we plan to extend the program to simulate also quantum<br />

algorithms for different physical realizations of quantum computers. We<br />

hope that this will enable us to investigate problems that are connected<br />

Q 23 Quanteninformation II<br />

to decoherence and robustness in multi-qubit systems [2].<br />

[1] M. A. Nielsen, I. L. Chuang, Quantum Computation and Quantum<br />

Information (Cambridge University Press, Cambridge, 2000).<br />

[2] A. W. Harrow, M. A. Nielsen, Phys. Rev. A 68, 012308 (2003).<br />

Q 22.16 Di 14:00 Schellingstr. 3<br />

Quantum Error Correction with Multiple-Error Correcting<br />

Quantum Code s — •Gernot Alber and Jörg Wassenberg —<br />

Institut für Angewandte Physik, Technische Universität Darmstadt,<br />

Hochschulstraße 4a, D-64289 Darmstadt<br />

In order to perform computations with a quantum computer it is necessary<br />

to stabilize the computer’s memory against decoherence over a<br />

sufficiently large time scale. If the qubits are represented by electronic<br />

levels of atoms or ions an important error source is spontaneous emission.<br />

Encoding the information in a detected-jump correcting quantum code, errors<br />

can be corrected by application of suitable recovery operations upon<br />

detection of spontaneous emission events.<br />

We study the stabilizati on of quantum algorithms against spontaneous<br />

emission by jump codes being capable of correcting two or more successive<br />

errors, and compare with exist ing results using one-error correcting<br />

codes.<br />

Zeit: Dienstag 16:30–18:30 Raum: HS 101<br />

Q 23.1 Di 16:30 HS 101<br />

Quasi decoherence-free subspaces in collective quantum memories<br />

— •C. Mewes, R.G. Unanyan, and M Fleischhauer — Fachbereich<br />

Physik, Universität Kaiserslautern, 67653, Kaiserslautern, Germany<br />

One of the most important practical challenges of quantum information<br />

processing is the protection of quantum information against decoherence.<br />

For photonic qubits stored in collective atomic superpositions<br />

[1] it can be shown that the quantum information can be protected from<br />

individual particle decoherence by combining dynamical decoupling well<br />

known in NMR systems, e.g.[2], with the concept of quasi-decoherence<br />

free subspaces. For the storage of qubits a pair of special collective states<br />

is used in which the qubit is stored in two different magnetic sublevels.<br />

Individual collisional interactions between the storage atoms itself and<br />

foreign buffer gas perturbers lead to decoherence due to spin flips and<br />

dephasing processes. By applying a fast periodic interaction it is possible<br />

to supress the dephasing mechanism. To protect the system also against<br />

spin flips an additional and sufficiently large energy gap between the two<br />

storage states and all other states has to be introdu! ced. In this way the<br />

stored qubit can be protected against decoherence from both spin flips<br />

and dephasing [3].<br />

[1] M. Fleischhauer and M. Lukin, PRL 84 (2000) 5904<br />

[2] U. Haeberlen and J.S. Waugh, Phys. Rev. 175 (1968) 453<br />

[3] C. Mewes, R. Unanyan and M. Fleischhauer. To be published<br />

Q 23.2 Di 16:45 HS 101<br />

Quantum phase gate using slow polaritons in optical lattices —<br />

•Marius Masalas 1,2 and Michael Fleischhauer 1 — 1 Technische<br />

Universität Kaiserslautern, Germany — 2 Institute of Theoretical Physics<br />

and Astronomy, Vilnius University, Lithuania<br />

The quantum state of light propagating in a medium with electromagnetically<br />

induced transparency can be mapped onto a matter wave. Using<br />

elastic collisions between atoms and slow light techniques one can produce<br />

a large and controllable nonlinearity enhanced by an optical lattice.<br />

This nonlinearity may be used for a quantum phase gate. The collision<br />

problem of two polariton pulses, each containing a single excitation is<br />

solved analitically and it is shown that it is possible to achieve phase<br />

shift of order of π. The influence of degrading processes such as losses is<br />

also discussed.<br />

103<br />

Q 23.3 Di 17:00 HS 101<br />

Licht-Materie Schnittstelle für kontinuierliche Variable —<br />

•Klemens Hammerer 1 , Klaus Mölmer 2 , Eugene Polzik 3<br />

und Ignacio Cirac 1 — 1 Max-Planck-Institut für Quantenoptik,<br />

Hans-Kopfermannstrasse 1, D-85748 Garching — 2 QUANTOP, Danish<br />

Research Foundation Center for Quantum Optics 3 Department of<br />

Physics and Astronomy, University of Aarhus, DK 8000 Aarhus C,<br />

Denmark — 3 Niels Bohr Institute, DK 2100 Copenhagen, Denmark<br />

Wie bereits experimentell bestätigt, kann eine Kerr Wechselwirkung<br />

zwischen einem Spin-polarisierten Ensemble von Zwei-Niveau-Atomen<br />

und einem polarisierten Laserpuls dazu eingesetzt werden, verschränkte<br />

Zustände zwischen diesen Systemen zu erzeugen. Wir zeigen hier, wie der<br />

Effekt dieser Wechselwirkung um ein Vielfaches gesteigert werden kann.<br />

Die Methode, die hier vorgestellt werden soll, erlaubt es, gezielt maximal<br />

verschränkte EPR Zustände oder Quadratur- und Spin-gequetschte<br />

Zustände herzustellen.<br />

Diese Zustände stellen eine wertvolle Resource dar für Zwecke der<br />

Quanteninformation. Insbesondere kann ein EPR-Zustand dazu verwendet<br />

werden, einen unbekannten Polarisationszustand eines Lichtpulses<br />

auf den Zustand des kollektiven Spins der Atome zu teleportieren. Weil<br />

Licht einen idealen Träger zum Verteilen von Quantenzuständen bildet,<br />

zum Speichern dieser Zustände aber Atome besser geeignet sind, ist eine<br />

solche Schnittstelle zwischen Licht und Materie ein wichtiger Baustein<br />

für ein Quantennetzwerk.<br />

Q 23.4 Di 17:15 HS 101<br />

Multiparticle entanglement generation using ground states<br />

coherences — •Pavel Lougovski 1 , Girish. S. Agarwal 2 , and<br />

Herbert Walther 1 — 1 Max-Planck-Institut für Quantenoptik,<br />

Hans-Kopfermann-Str. 1, D-85748, Garching, Germany — 2 Physical<br />

Reaserch Laboratory, Navrangpura, Ahmedabad, India<br />

We propose a method for the generation of multiparticle ground state<br />

entanglement utilizing j=+1/2 to -1/2 atomic transitions and their interaction<br />

with far detuned elliptically polarized quantum field. We discuss<br />

how this method could be used for storing and retrieving of quantum<br />

states of the radiation field.<br />

Q 23.5 Di 17:30 HS 101<br />

Entanglement of formation versus negative domains of Wigner<br />

functions. — •Alexander Wolf 1 , Jens Peder Dahl 2 , and Wolfgang<br />

Peter Schleich 1 — 1 Abteilung für Quantenphysik, Universität<br />

Ulm, D-89069 Ulm, Germany — 2 Chemical Physics, Department<br />

of Chemistry,Technical University of Denmark, DTU 207, DK-2800 Kgs.<br />

Lyngby, Denmark<br />

We analyze entanglement of formation and negative domains of Wigner<br />

functions in their dependence on the number of dimensions. Here, we focus<br />

on s-waves, that is, wave functions that only depend on a hyperradius.

Hurra! Ihre Datei wurde hochgeladen und ist bereit für die Veröffentlichung.

Erfolgreich gespeichert!

Leider ist etwas schief gelaufen!