16.01.2013 Aufrufe

aktualisiertes pdf - DPG-Tagungen

aktualisiertes pdf - DPG-Tagungen

aktualisiertes pdf - DPG-Tagungen

MEHR ANZEIGEN
WENIGER ANZEIGEN

Sie wollen auch ein ePaper? Erhöhen Sie die Reichweite Ihrer Titel.

YUMPU macht aus Druck-PDFs automatisch weboptimierte ePaper, die Google liebt.

wurde auch der die Anisotropie beschreibende β-Parameter geschwindigkeitsabhängig<br />

bestimmt. Außer dem Nachweis einer Abhängigkeit des<br />

Verzweigungsverhältnisses P(Cl ∗ )/[P(Cl) + P(Cl ∗ )] von der kinetischen<br />

Energie der Fragmente gelang eine Bestätigung theoretischer Vorhersagen,<br />

die eine Abhängigkeit des Verzweigungsverhältnisses vom Quantenzustand<br />

des CSCl-Fragments erwarten lassen.<br />

MO 12.19 Di 14:00 Schellingstr. 3<br />

KER-selektive Auger-Elektronenemission von raumfestem N2<br />

— •T. Jahnke 1 , L. Foucar 1 , J. Titze 1 , R. Wallauer 1 , T. Osipov<br />

2 , E. Benis 2 , A. Alnaser 2 , O. Jagutzki 1 , W. Arnold 1 , C. L.<br />

Cocke 2 , M. H. Prior 3 , H. Schmidt-Böcking 1 und R. Dörner 1 —<br />

1 Institut für Kernphysik der J.W.Goethe Universität, August-Euler-Str.<br />

6, 60486 Frankfurt am Main — 2 Dept of Physics, Kansas State University,<br />

Cardwell Hall, Manhattan KS 66506 — 3 Lawrence Berkeley National<br />

Laboratory, Berkeley CA 94720<br />

Nach der K-Photoionisation von N2 kommt es nach einem Augerzerfall<br />

in der überwiegenden Zahl der Fälle zu einer Fragmentation des<br />

Moleküls in 2 positiv geladene Ionen. Durch koinzidente Messung der<br />

Impulse der ionischen und der elektronischen Fragmente kann die Stellung<br />

der Molekülachse zum Zeitpunkt des Zerfalls rekonstruiert werden,<br />

und der Impuls des Auger-Elektrons relativ zu dieser dargestellt werden.<br />

MO 12.20 Di 14:00 Schellingstr. 3<br />

Direct Experimental Observation of Interatomic-Coulombic-<br />

Decay of Neon Dimers — •T. Jahnke 1 , A. Czasch 1 , M. Schöffler<br />

1 , S. Schößler 1 , A. Knapp 1 , M. Käsz 1 , J. Titze 1 , C. Wimmer<br />

1 , K. Kreidi 1 , R. Grisenti 2 , O. Jagutzki 1 , U. Hergenhahn 1 ,<br />

H. Schmidt-Böcking 1 und R. Dörner 1 — 1 Institut für Kernphysik<br />

der J.W.Goethe Universität, August-Euler-Str. 6, 60486 Frankfurt am<br />

Main — 2 Fritz-Haber-Institut, MPG Berlin<br />

Using the COLTRIMS technique a direct experimental observation of<br />

the ”Interatomic-Coulombic-Decay” (ICD) of Neon dimers has been performed.<br />

A supersonic jet consisting of Neon atoms and small clusters is<br />

crossed with a beam of linearly polarized light. After 2s-photoionization<br />

of a Neon atom, an Auger decay of the atom is prohibited as the system<br />

does not provide enough energy for the emission of an electron. In contrast<br />

to that, for a Neon dimer an Auger decay is energetically possible,<br />

as predicted by Cederbaum et al.: ICD occurs - relaxation of the inner<br />

valance hole takes place as energy is transferred from the neighboring<br />

atom.<br />

MO 12.21 Di 14:00 Schellingstr. 3<br />

Electron and nuclear density dynamics in model systems —<br />

•Marco Erdmann and Volker Engel — Institut für Physikalische<br />

Chemie, Am Hubland, 97074 Würzburg, Germany<br />

We study the correlated electronic and nuclear quantum dynamics<br />

in model systems which allow for a numerically exact solution of the<br />

time–dependent Schrödinger equation. The influence of non–adiabatic<br />

couplings on absorption spectra is investigated and temporal changes in<br />

the electronic and nuclear densities during laser induced spectroscopic<br />

transitions are analyzed. The time–dependent localization of electrons<br />

within the system is characterized with the help of the ELF (electron<br />

localization function) in the case of parallel spin and by an analogous<br />

function for anti-parallel spin.<br />

MO 12.22 Di 14:00 Schellingstr. 3<br />

Energietransfer und Vibrationen in molekularen Aggregaten —<br />

•Alexander Eisfeld und John S. Briggs — Hermann-Herder-Str.<br />

3 D-79104 Freiburg<br />

Seit ihrer Entdeckung vor fast 70 Jahren haben molekulare Aggregate<br />

bestehend aus organischen Farbstoffen grosse Aufmerksamkeit auf sich<br />

gezogen. Neben ihren mannigfaltigen Anwendungen in der Technik erregte<br />

vor allem das bei der Aggregation entsehende schmale, rotverschobene<br />

Absorptionsband das Interesse vieler Forscher. Schon früh wurde die Exzitonentheorie<br />

von Frenkel benutzt um das Auftreten dieses sogenannten<br />

J-Bandes zu erklären. Allerdings bereitete die genaue Form des Absorptionsspektrums<br />

einige Schwierigkeiten, da die elektronische Anregung<br />

an Vibrationen gekoppelt ist. Mit der CES-Approximation war es uns<br />

möglich Absorptionsspektren verschiedener Aggregate herrvorragend zu<br />

berechnen 1 . Es sollen nun der Geltungsbereich der CES-Approximation<br />

genauer untersucht werden indem die Ergebnisse der CES Rechnungen<br />

mit Resultaten verglichen werden die durch Diagonalisieren des zugrundeliegenden<br />

Hamiltonoperators erziehlt wurden.<br />

60<br />

1 A. Eisfeld, J.S. Briggs, The J-Band of organic Dyes: Lineshape and<br />

Coherence Length, Chem. Phys. 281, 61 (2002)<br />

MO 12.23 Di 14:00 Schellingstr. 3<br />

Ionization of H2 in intense laser pulses — •Erich Goll 1 , Alejandro<br />

Saenz 2 , and Günter Wunner 3 — 1 Inst. f. Theor. Chem.,<br />

Universität Stuttgart, D-70569 Stuttgart — 2 Inst f. Phys., Humboldt-<br />

Universität zu Berlin, D-10117 Berlin — 3 Inst. f. Theor. Phys. 1, Universität<br />

Stuttgart, D-70569 Stuttgart<br />

The ionization of H2 in intense laser pulses was investigated by solving<br />

the time-dependent Schrödinger equation in the basis of eigenfunctions<br />

of the H2 potential. In order to describe the ionization we employed an<br />

ionization operator, which depends on the ionization potential. This potential<br />

corresponds to the difference between the potential curves of H2<br />

and H + 2 and therefore varies with the distance of the nuclei. In short<br />

pulses this leads to an effect called Lochfraß (hole biting). It means that<br />

the wave function decreases fast in particular at those nuclear distances,<br />

where the ionization rate is high.<br />

Quantitative analysis shows that this effect only partly accounts for<br />

the suppressed ionization of H2, where the ion yield for H2 is much lower<br />

than for Ar, despite the similarity of their ionization potentials.<br />

We have performed calculations not only for the ionization step but<br />

also for the ensuing time evolution of the wave function in the H + 2 potential.<br />

We find that the occupation of the vibrational states does not obey<br />

the Franck-Condon principle.<br />

MO 12.24 Di 14:00 Schellingstr. 3<br />

Dynamic Transformation of Chemical Reactions of M + YX →<br />

[MYX] → [MXY] → MX + Y — •Victor Wei-Keh Wu — Department<br />

of Electronic Engineering, Lan-Yang Institute of Technology,<br />

261-02 Tou-Cheng, I-Lan, Taiwan, Republic of China<br />

It has been for ca. 80 years that chemical reaction dynamics in general<br />

form of A + BC → AB + C has been investigated. In the mean time,<br />

it can be well concluded: M + YX = M + HX/CH3X/DX → [MYX] →<br />

[MXY] → MX + H/CH3/D = MX + Y : the more heavier of M (M = Ba,<br />

K) of the reaction Ba/K + HBr, the less possible that H firstly attaches<br />

M, or the more heavier of Y of Ba + HBr/CH3Br (Y = H, CH3, D),<br />

the less possible that Y firstly attaches M, before MX is produced. This<br />

means there is more or less migration, coordination of relative positions<br />

of involved atoms during the moment of colliding or sticking together of<br />

all atoms. The energy and momenta (translational, orbital and angular)<br />

along the whole reaction route must be naturally conserved. How far<br />

whether L + J = L’ + J’ can be approximately treated with L ≈ J’<br />

should also be kept investigated. These trends may be extended for the<br />

biomolecular reaction dynamics, specifically, for the interacting atoms<br />

of the respective functional groups of the respective sites of interacting<br />

biomolecules. To confront with these subjects, many assumptions<br />

and simplifications for simulation must be done. The author is at the<br />

same time in charge of Victor Basic Research Laboratory e. V., Bielefeld,<br />

Germany (Email: victorbres3tw@yahoo.com.tw, http://www.unibielefeld.de/<br />

˜ fkure, Telefax:+49-(0)521-5213339, Fax:+886-(0)3-977-<br />

4483/Tel:-1997-ext-231(O), Tel:+886-0919-300-525(handy)<br />

MO 12.25 Di 14:00 Schellingstr. 3<br />

Evidence for subthermal rotational populations in molecular<br />

ions through state-dependent Dissociative Recombination —<br />

•L. Lammich 1 , D. Strasser 2 , H. Kreckel 1 , M. Lange 1 , H.B.<br />

Pedersen 1 , V. Andrianarijaona 1 , S. Altevogt 1 , H. Buhr 1 , D.<br />

Schwalm 1 , A. Wolf 1 , and D. Zajfman 2 — 1 Max-Planck-Institut für<br />

Kernphysik, Heidelberg — 2 Weizmann Institue of Science, Rehovot, Israel<br />

Astrophysical applications and a clean theoretical understanding call<br />

for laboratory studies of electron–molecular ion interactions at cryogenic<br />

temperatures (10–100K), while the ion storage rings commonly used for<br />

such measurements are large scale, room temperature devices. A recent<br />

experiment at the ion storage ring TSR indicates that subthermal rotational<br />

level populations of stored molecular ions have been prepared by<br />

continuous inelastic electron interactions.<br />

Variations in the rate coefficient α for Dissociative Recombination of<br />

D2H + ions with low energy electrons were observed over long storage<br />

times, and could be attributed to changes in the rotational level distributions<br />

of the stored ions. The comparison of data taken for different<br />

settings of the merged electron and ion beams show that, besides the<br />

coupling to the surrounding 300K blackbody radiation, electron interactions<br />

can reduce the rotational excitations in the molecular ion beam.

Hurra! Ihre Datei wurde hochgeladen und ist bereit für die Veröffentlichung.

Erfolgreich gespeichert!

Leider ist etwas schief gelaufen!