16.01.2013 Aufrufe

aktualisiertes pdf - DPG-Tagungen

aktualisiertes pdf - DPG-Tagungen

aktualisiertes pdf - DPG-Tagungen

MEHR ANZEIGEN
WENIGER ANZEIGEN

Erfolgreiche ePaper selbst erstellen

Machen Sie aus Ihren PDF Publikationen ein blätterbares Flipbook mit unserer einzigartigen Google optimierten e-Paper Software.

odische imaginäre Potentiale können einfach für metastabile Atome realisiert<br />

werden. Die ortsabhängige Absorption wird mit Hilfe einer stehenden<br />

Lichtwelle realisiert, deren Frequenz auf einen angeregten Zustand<br />

abgestimmt ist, der hauptsächlich in den Grundzustand zerfällt. Da nur<br />

die metastabilen Atome nachgewiesen werden, entspricht die Absorption<br />

eines Photons der Absorption (Vernichtung) eines metastabilen Atoms.<br />

Wir werden im Detail den experimentellen Nachweis der vorhergesagten<br />

Wellenpakete diskutieren. Mit Hilfe eines atom-interferometrischen<br />

Aufbaus konnten wir sowohl den Absolutbetrag, als auch die räumliche<br />

Phase des Wellenpakets vermessen. Die experimentellen Daten stimmen<br />

sehr gut mit den theoretischen Vorhersagen[2] überein.<br />

[1] D.O. Chudesnikov and V.P. Yakovlev, Laser Phys., 1, 110 (1991).<br />

[2] M.A. Efremov et al., Laser Phys., 13, 995 (2003); JETP, 97, 522<br />

(2003).<br />

Q 25.3 Di 17:15 HS 218<br />

Wellenpaketdynamik und Zahlenfaktorisierung — •Eric Lutz,<br />

Holger Mack und Wolfgang P. Schleich — Universität Ulm, Abteilung<br />

für Quantenphysik D-89069 Ulm<br />

Die Zeitentwicklung eines Wellenpakets mit quadratischen Phasenfaktoren<br />

zeigt quantenmechanische Wiederkehrphänomene, die als revivals<br />

und fractional revivals bezeichnet werden. Wir zeigen wie diese fractional<br />

revivals benutzt werden können um Zahlen zu faktorisieren und diskutieren<br />

wie die einzelnen Faktoren aus der Messung der Autokorrelationsfunktion<br />

gewonnen werden können.<br />

Q 25.4 Di 17:30 HS 218<br />

Coherent propagation of electron wavepackets in arrays of<br />

coupled quantum dots — •Georgios Nikolopoulos 1,2 , David<br />

Petrosyan 2 , and Peter Lambropoulos 2 — 1 Institut für Angewandte<br />

Physik, Technische Universität Darmstadt, D-64289 Darmstadt<br />

— 2 Institute of Electronic Structure and Laser, FORTH, P.O.Box 1527,<br />

Heraklion, GR-71110 Crete<br />

Quantum computing schemes where the qubits are represented by spinstates<br />

of single electrons confined in individual quantum dots(QDs), are<br />

of particular interest to current research, since they are considered to<br />

be the most promising candidates for making large quantum computers.<br />

Motivated by the necessity of understanding the dynamics of electron<br />

wavepackets in the presence of disorder and dissipation and to investigate<br />

the conditions under which coherent transport can be achieved,<br />

we study the dynamics of few-electron transport in a linear array of<br />

tunnel-coupled quantum dots. The electrons are considered initially well<br />

localized at the ends of the chain and their spin-sates are well defined.<br />

We find that this system exhibits a rich variety of coherent phenomena,<br />

ranging from electron wavepacket propagation and interference to manyparticle<br />

bonding and collision. Furthermore, we show that choosing the<br />

couplings between adjacent QDs (optimal coupling) judiciously, one may<br />

achieve non-dispersive propagation of the electron wavepacket. A possible<br />

scenario capable of producing controllable mesoscopically separated<br />

EPR correlated pairs of electrons is presented.<br />

Q 25.5 Di 17:45 HS 218<br />

Phase-Control of Collective Quantum Dynamics — •Jörg<br />

Evers 1 , Mihai Macovei 1,2 , and Christoph H. Keitel 1 —<br />

1 Theoretische Quantendynamik, Fakultät für Mathematik und Physik,<br />

Universität Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg im<br />

Breisgau — 2 Institute of Applied Physics, Academiei str. 5., MD-2028<br />

Chisinau, Moldova<br />

Ever since the classic work by Dicke [1], the concept of collectivity for<br />

dipole-interacting atoms confined in a region of the order of a typical<br />

optical wavelength has received considerable attention. However for possible<br />

applications, convenient schemes are required to control the atoms.<br />

In this talk, we present a control scheme based on the manipulation of<br />

the relative phase between the driving laser fields [2] for a collection<br />

of three-level atoms in V - or Λ- configuration [3]. For larger samples,<br />

106<br />

the phase is shown to be a convenient parameter to rapidly populate or<br />

depopulate completely a trapping state of the ensemble. Increasing the<br />

number of atoms leads to a more rapid transfer of the atoms into the<br />

trapping states or vice versa. As applications, we discuss fluorescence<br />

and absorption properties of the atoms and a possible setup for a fast<br />

optical switching device controlled by the relative phase.<br />

[1] R. H. Dicke, Phys. Rev. 93, 99 (1954).<br />

[2] M. A. G. Martinez et al., Phys. Rev. A. 55, 4483 (1997), E. Paspalakis<br />

and P. L. Knight, Phys. Rev. Lett. 81, 293 (1998).<br />

[3] M. Macovei, J. Evers and C. H. Keitel, Phys. Rev. Lett. 91, 233601<br />

(2003).<br />

Q 25.6 Di 18:00 HS 218<br />

Exact decoherence to pointer states in free open quantum systems<br />

is generic — •J. Eisert — Institut für Physik, Universität<br />

Potsdam, Am Neuen Palais 10, D-14469 Potsdam<br />

In this talk it is shown that exact decoherence to minimal uncertainty<br />

Gaussian pointer states is generic for free quantum particles coupled to<br />

a heat bath. More specifically, the paper is concerned with damped free<br />

particles linearly coupled to a heat bath at arbitrary temperature, with<br />

arbitrary coupling strength and spectral densities covering the ohmic,<br />

subohmic, and supraohmic regime. Then it is true that there exists a time<br />

tc such that for times t > tc the state can always be exactly represented as<br />

a mixture (convex combination) of particular minimal uncertainty Gaussian<br />

states, regardless of the initial state. This exact ‘localisation’ is hence<br />

not only a feature of the high temperature and weak damping limit, but<br />

rather a generic property of damped free particles.<br />

Q 25.7 Di 18:15 HS 218<br />

Measurement-based approach to quantum arrival times —<br />

•Dirk Seidel and Gerhard C. Hegerfeldt — Tammannstrasse 1,<br />

37077 Göttingen, Germany<br />

For a quantum-mechanically spread-out particle we investigate a method<br />

for determining its arrival time at a specific location. The procedure is<br />

based on the emission of the first photon from a two-level system moving<br />

into a laser-illuminated region. The resulting temporal distribution<br />

is explicitly calculated for the one-dimensional case and compared with<br />

axiomatically proposed expressions. As main results we show that (a) by<br />

means of a deconvolution one obtains the well known quantum mechanical<br />

probability flux of the particle [1] (b) by normalizing the corresponding<br />

temporal operator function the axiomatic arrival-time distribution<br />

of Kijowski is recovered [2] (c) a limiting case yields Allcock’s complex<br />

potential model.<br />

[1] J.A. Damborenea, I.L. Egusquiza, G.C. Hegerfeldt, J.G. Muga, Phys.<br />

Rev. A 66, 052104 (2002)<br />

[2] G.C. Hegerfeldt, D. Seidel, J.G. Muga, Phys. Rev. A 68, 022111 (2003)<br />

Q 25.8 Di 18:30 HS 218<br />

Analysis of a minimally invasive detector model — •Jens Timo<br />

Neumann und Gerhard C. Hegerfeldt — Inst. f. Theor. Physik,<br />

Univ. Göttingen, Tammanstr. 1, 37077 Göttingen<br />

Recently, models (J.J. Halliwell, Progr.Theor.Phys. 102 No. 4<br />

(1999), 707-717; L.S. Schulman, talk at 8 th Workshop on Time in Quantum<br />

Mechanics, Teneriffe 2003) for minimally invasive particle detectors<br />

have been proposed, similar to a cloud chamber where a charged particle<br />

causes macroscopic changes in the environment without itself being<br />

disturbed strongly. In the model, the detector (not the particle!) couples<br />

to a large environment only when the wave function of the particle<br />

overlaps with the detector. We investigate to what extent the model is<br />

truly minimally invasive and show that it has a close relation to quantum<br />

optics, with similar limitations as in the detection through fluorescence<br />

by means of a laser. Possible optimization schemes are discussed.

Hurra! Ihre Datei wurde hochgeladen und ist bereit für die Veröffentlichung.

Erfolgreich gespeichert!

Leider ist etwas schief gelaufen!