16.01.2013 Aufrufe

aktualisiertes pdf - DPG-Tagungen

aktualisiertes pdf - DPG-Tagungen

aktualisiertes pdf - DPG-Tagungen

MEHR ANZEIGEN
WENIGER ANZEIGEN

Erfolgreiche ePaper selbst erstellen

Machen Sie aus Ihren PDF Publikationen ein blätterbares Flipbook mit unserer einzigartigen Google optimierten e-Paper Software.

investigations of saturation effects are discussed.<br />

In addititon, we study cooling processes, in particular Raman sideband<br />

cooling [1], in the QUEST in a new experimental setup. The aim is to create<br />

a Bose-Einstein condensate [2] as a cooling agent to sympathetically<br />

cool the lithium into quantum degeneracy.<br />

[1] A. J. Kerman et al., Phys. Rev. Lett. 84, 439 (2000)<br />

[2] M. D. Barrett et al., Phys. Rev. Lett. 87, 010404 (2001), G. Cennini<br />

et al., Phys.Rev. Lett. 91, 240408 (2003)<br />

Q 38.3 Do 14:00 Schellingstr. 3<br />

Towards Formation of a Metastable Calcium BEC — •Dirk<br />

Hansen, Janis Mohr, Ciprian Zafiu, and Andreas Hemmerich<br />

— Institut für Laserphysik, Universität Hamburg, Luruper Chaussee 149,<br />

22761 Hamburg<br />

Alkaline-earth-metal atoms provide a unique combination of interesting<br />

spectroscopic features connected to their two valence electrons. The<br />

resulting singlet and triplet states offer strong principle fluorescence lines<br />

well suited for laser cooling as well as narrow-band intercombination transitions<br />

that can be used for refined laser cooling schemes. The metastable<br />

3 P2, mJ = 2 state is an interesting candidate for magnetic trapping and<br />

the formation of a Bose-Einstein-Condensate (BEC).<br />

Efficient production and magnetic trapping of cold metastable Calcium<br />

has recently been demonstrated in our group [1-2]. In this poster,<br />

we report on modifications of the experimental setup, which promise significant<br />

improvements in particle number, temperature, and density. The<br />

prospects of evaporative cooling and BEC-formation in a miniature Ioffe<br />

- Pritchard trap are discussed.<br />

[1] J. Grünert, S. Ritter, and A. Hemmerich, Phys. Rev. A 65,<br />

041401(R) (2002)<br />

[2] D. Hansen, J. Mohr, A. Hemmerich, Phys. Rev. A 67, 021401(R)<br />

(2003)<br />

Q 38.4 Do 14:00 Schellingstr. 3<br />

Improved upper bound on the ground-state energy of a homogeneous<br />

Bose-Einstein condensate — •Christoph Weiss and<br />

André Eckardt — Institut für Physik, Universität Oldenburg, D-<br />

26129 Oldenburg, Germany<br />

The standard calculations of the ground-state energy of a homogeneous<br />

Bose-Einstein condensate rely on certain approximations which appear<br />

physically reasonable, but are difficult to control. Therefore, mathematically<br />

rigorous bounds on the ground-state energy are of particular importance.<br />

The derivation of such bound was pioneered by Dyson already<br />

in 1957 [1]. While his lower bound could recently be increased by a factor<br />

of 14 by Lieb and Yngvason [2], his upper bound [1] has remained<br />

essentially unchanged. Here, an improved, rigorous upper bound on the<br />

ground-state energy is established.<br />

[1] F.J. Dyson, Phys. Rev. 106, 20 (1957).<br />

[2] E.H. Lieb and J. Yngvason, Phys. Rev. Lett. 80, 2504 (1998).<br />

Q 38.5 Do 14:00 Schellingstr. 3<br />

Order and chaos in the electrodynamic trapping of slow polar<br />

molecules. — •P.W.H. Pinkse, E. Schmidt, T. Junglen, T.<br />

Rieger, S.A. Rangwala, and G. Rempe — Max-Planck-Institut für<br />

Quantenoptik, Hans-Kopfermann-Str. 1, 85748 Garching, Germany<br />

In the last few years, magnetic and electrostatic trapping of selected<br />

slow molecules has been demonstrated. For molecules with permanent<br />

dipole moments, new techniques are required to allow simultaneous trapping<br />

of atoms and molecules in various internal states. This would, for<br />

instance, allow cold collision studies and applications of slow molecules<br />

in precision spectroscopy. Recently, we demonstrated two-dimensional<br />

trapping of dipolar molecules in an electrodynamic four-wire trap [1], as<br />

reported in a contribution by Junglen et al. This technique has the capability<br />

to trap low- and high-electric field seeking states simultaneously.<br />

Hence, in principal, atoms could also be trapped. In this contribution we<br />

analyse the motion of molecules in our two-dimensional electrodynamic<br />

trap. The motion of molecules in the central, harmonic part of trap is well<br />

understood. However, numerical simulations have shown that the anharmonicities<br />

away from the centre play an important role. Indeed, the calculated<br />

molecular trajectories show strong evidence of chaotic behaviour.<br />

We illustrate the cross-over from the regular to the chaotic regime, using<br />

a set of diagnostic tools for chaos such as Poincaré maps, power spectrum<br />

analysis, trajectory separation, and Lyapunov exponents.<br />

[1] T. Junglen, T. Rieger, S.A. Rangwala, P.W.H. Pinkse, and G. Rempe,<br />

arXiv:physics/0310046<br />

120<br />

Q 38.6 Do 14:00 Schellingstr. 3<br />

Localising a single atom in a cavity-QED field — •N. Syassen, P.<br />

Maunz, I. Schuster, T. Puppe, P.W.H. Pinkse, and G. Rempe —<br />

Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, 85748<br />

Garching, Germany<br />

A single atom trapped in the field mode of a small high-finesse cavity<br />

forms the paradigm of cavity-QED. Questions in fundamental quantum<br />

optics, like investigations on quantum measurement can be addressed<br />

in such a system. Moreover, fascinating applications in quantuminformation<br />

processing and quantum computing are being developed. For<br />

many of these applications, trapping of an atom in the cavity mode alone<br />

is not enough. Ideally, the atom should not move and be perfectly localized<br />

at the antinode of the cavity-QED field.<br />

Here we analyse the localisation of a single atom stored in an intracavity<br />

dipole trap. Cavity cooling [1,2] as presented in talk Q6.1 is used<br />

to improve the localisation and to compensate for heating introduced by<br />

probing the atom-cavity system. Resolving the normal modes of the coupled<br />

system is only possible for a large and constant enough coupling.<br />

Once the normal modes are resolved, the broadening of the normal-mode<br />

resonances allows us to investigate the variation in coupling strength and<br />

hence how well the atom is localized.<br />

[1] P. Horak et al. H. Ritsch, Phys. Rev. Lett. 79, 4974 (1997). V.<br />

Vuletić and S. Chu, Phys. Rev. Lett. 84, 3787 (2000).<br />

[2] P. Maunz, T. Puppe, I. Schuster, N. Syassen, P.W.H Pinkse, and G.<br />

Rempe, to be published.<br />

Q 38.7 Do 14:00 Schellingstr. 3<br />

Analysis of the motion of a single atom in a cavity dipole<br />

trap. — •I. Schuster, P. Maunz, T. Puppe, N. Syassen, P.W.H.<br />

Pinkse, and G. Rempe — Max-Planck-Institut für Quantenoptik,<br />

Hans-Kopfermann-Str. 1, 85748 Garching, Germany<br />

In the regime of strong coupling, the motion of a single atom inside<br />

a high-finesse cavity can directly be observed since the position of the<br />

atom has a large influence on the light intensity within the cavity [1].<br />

In our experiment, the atom is captured in an additional far-detuned<br />

standing-wave dipole trap [2]. The radial oscillation of the atom in the<br />

trap is clearly visible in the time-resolved transmission signal of the nearresonant<br />

cavity-QED field. The axial oscillation frequency is two orders<br />

of magnitude larger but can be resolved in the autocorrelation function<br />

of the transmitted light by virtue of the high detection bandwidth. The<br />

interdependence between axial and radial oscillation is examined. The<br />

motion of the atom inside the dipole trap is studied for different trap<br />

parameters.<br />

[1] P.W.H. Pinkse, T. Fischer, P. Maunz, and G. Rempe, Nature 404,<br />

365 (2000). C.J. Hood, T.W. Lynn, A.C. Doherty, A.S. Parkins, and<br />

H.J. Kimble. Science 287, 1447 (2000).<br />

[2] J. Ye, D.W. Vernooy, and H.J. Kimble, Phys. Rev. Lett. 83, 4987<br />

(1999).<br />

Q 38.8 Do 14:00 Schellingstr. 3<br />

Continued Observation and Absolute Position Control<br />

of Single Neutral Atoms — •Mkrtych Khudaverdyan,<br />

Dominik Schrader, Yevhen Miroshnychenko, Igor Dotsenko,<br />

Wolfgang Alt, Stefan Kuhr, Wenjamin Rosenfeld,<br />

Arno Rauschenbeutel, and Dieter Meschede — Institut für<br />

Angewandte Physik, Universität Bonn, Wegelerstr. 8, Bonn, 53115<br />

Using an intensified CCD camera we spatially resolve Caesium atoms,<br />

confined to the potential wells of a standing wave optical dipole trap<br />

with diffraction limited resolution. The atoms are illuminated by a reddetuned<br />

optical molasses, which induces the fluorescence light and cools<br />

the atoms at the same time. Using this technique, we have continuously<br />

imaged the controlled motion of a single atom as well as of a small number<br />

of distinguishable atoms with observation times exceeding one minute<br />

[1].<br />

The absolute position of an atom can be controlled using our optical<br />

conveyor belt [2, 3] in combination with a feedback loop. The initial position<br />

of the atom in the dipole trap is determined using the intensified<br />

CCD camera. Then, the atom is transported to the desired target position<br />

with sub-micrometer precision. The current precision of the position<br />

feedback is 400 nm and is determined by the resolution of the atom in<br />

the dipole trap. This position control is an important prerequisite for<br />

introducing atoms into an optical resonator, which will enable controlled<br />

interaction between two or more atoms.<br />

[1] Y.Miroshnychenko et al., Optics Express (in print)<br />

[2] S. Kuhr et al., Science 293, 278 (2001)

Hurra! Ihre Datei wurde hochgeladen und ist bereit für die Veröffentlichung.

Erfolgreich gespeichert!

Leider ist etwas schief gelaufen!