16.01.2013 Aufrufe

aktualisiertes pdf - DPG-Tagungen

aktualisiertes pdf - DPG-Tagungen

aktualisiertes pdf - DPG-Tagungen

MEHR ANZEIGEN
WENIGER ANZEIGEN

Sie wollen auch ein ePaper? Erhöhen Sie die Reichweite Ihrer Titel.

YUMPU macht aus Druck-PDFs automatisch weboptimierte ePaper, die Google liebt.

Q 40 Laserspektroskopie<br />

Zeit: Donnerstag 16:30–18:30 Raum: HS 204<br />

Q 40.1 Do 16:30 HS 204<br />

New Trends in Apertureless Scanning Near-field Optical Microscopy<br />

— •Javad Farahani, Hans -Juergen Eisler, and Bert<br />

Hecht — Nano-Optics Group, Dept. of Physics, University of Basel,<br />

Klingelbergstr. 82 CH-4056 Basel, Switzerland<br />

Over the last years to overcome the problems of aperture SNOM, different<br />

techniques for apertureless SNOM have been exploited. In this<br />

work, we demonstrate that using small metal structures on a dielectric<br />

tip, illuminated by laser can be, potentially used to increase spatial resolution<br />

of optical microscopy far beyond the diffraction limit. The set-up<br />

is based on a combination of contact-mode AFM and confocal microscope.<br />

Depending on the direction of polarization of the incoming beam,<br />

fluorescence can be either enhanced or quenched, which in both case the<br />

fluorophore is recognized with resolution higher than diffraction limit.<br />

Q 40.2 Do 16:45 HS 204<br />

Towards single-molecule detection by absorption —<br />

•Jacqueline Y.P. Butter and Bert Hecht — Nano-Optics<br />

group, Institute for Physics, University of Basel, Klingelbergstr. 82,<br />

CH-4056 Basel, Switzerland<br />

At cryogenic temperatures many temperature activated processes are<br />

frozen out, resulting in extremely sharp zero-phonon lines in fluorescence<br />

excitation spectra of certain molecule-matrix systems. The presence of<br />

sharp absorption lines is accompanied by the fact that the absorption<br />

cross section of a single molecule approaches the theoretical limit for<br />

an oscillating dipole. However, the spatial resolution in confocal microscopy<br />

is limited by the diffraction limit. Near-field excitation can be<br />

used to overcome this limit. Using near-field excitation, the light source<br />

can eventually be made smaller than the absorption cross section of a<br />

single molecule. The aim of our experiment is to look at the interaction<br />

of strongly confined light fields with single molecules. The set up we use,<br />

is a combination of a scanning confocal optical microscope and a scanning<br />

probe microscope, which is suitable for operation at both room and<br />

cryogenic temperature. A single-mode ring dye laser is used to excite the<br />

molecules and to perform spectroscopy at cryogenic temperature.<br />

Q 40.3 Do 17:00 HS 204<br />

Interaction of a single molecule with sharp metal tips at low<br />

temperature — •Senta Karotke and Bert Hecht — Nano-Optics<br />

group, Institute of Physics, University of Basel, Klingelbergstrasse 82,<br />

CH-4056 Basel<br />

A very interesting topic, which becomes accessible experimentally, is<br />

the examination of the properties of single quantum systems like single<br />

molecules and their interactions.<br />

Single molecules at cryogenic temperature are very sensitive probes<br />

for optical and electrical processes in their local environment. For example,<br />

the resonance of a molecule in the vicinity of a sharp metal tip is<br />

shifted. This shift occures either due to the interaction of the molecule<br />

with its backreflected field or, if a voltage is applied to the tip, due to the<br />

Stark effect. This fact can be exploited for high-resolution localization<br />

and imaging of single molecules or other quantum systems.<br />

The experimental investigations are carried out by using the wellestablished<br />

technique of a confocal microscope which is combined with<br />

a newly developed scanning tip setup with a tuning fork shearforce gapwidth<br />

control. In the temperature range from RT down to cryogenic T,<br />

we are able to record topographic images as well as optical images. We<br />

will present results showing tip-induced Stark effect of a single molecules,<br />

i.e. the frequency shift of single molecules as a function of the tip position.<br />

This demonstrates a new powerful technique of resolving single molecules<br />

with a spatial resolution only limited by the characteristic size of the tip.<br />

Q 40.4 Do 17:15 HS 204<br />

Präzisionsspektroskopie mit verschränkten Zuständen —<br />

•Christian Roos, Michael Chwalla, Mark Riebe, Jan<br />

Benhelm, Christoph Becher, Wolfgang Hänsel, Hartmut<br />

Häffner, Ferdinand Schmidt-Kaler und Rainer Blatt —<br />

Institut für Experimentalphysik<br />

Präzisionsspektroskopie an atomaren Bellzuständen bietet nicht nur<br />

den Vorteil eines verbesserten Signal-Rausch-Verhältnisses sondern<br />

darüber hinaus die Gelegenheit, die spektroskopischen Eigenschaften die-<br />

124<br />

ser ”Superatome” für die Messung masszuschneidern. Wir zeigen, dass<br />

in Experimenten mit zwei verschränkten 40 Ca + Ionen der Zeeman-Effekt<br />

1. Ordnung eliminiert werden kann, obwohl keinerlei m = 0 → m = 0<br />

Übergänge existieren. Darüberhinaus lassen sich Frequenzverschiebungen<br />

optischer Übergänge, die durch externe Felder verursacht werden und im<br />

Bereich weniger Hertz liegen, mithilfe von Bellzuständen detektieren und<br />

vermessen. Für Atomuhren auf Ionenfallenbasis ist dabei die elektrischen<br />

Quadrupolverschiebung von grosser Bedeutung sowie der Zeeman-Effekt<br />

zweiter Ordnung.<br />

Q 40.5 Do 17:30 HS 204<br />

Simultaneous electromagnetically induced transparency and<br />

absorption in a closed transition — •Luca Spani Molella,<br />

Rolf-Hermann Rinkleff, and Karsten Danzmann — Max-<br />

Planck-Institut für Gravitationsphysik und Institut für Atom- und<br />

Molekülphysik, Universität Hannover, Callinstraße 38, D-30167<br />

Hannover.<br />

Aim of this work is to provide insight into some new phenomena which<br />

occur in a typical EIA (electromagnetically induced absorption) transition.<br />

The F=4 to F’=5 transition of the Cs D2 line is analyzed with a<br />

probe and a coupling laser. A third laser allows simultaneous measurement<br />

of the dispersion of either the probe or the coupling laser (heterodyne<br />

interferometer). At resonance the probe laser shows EIA, while the<br />

coupling shows simultaneously electromagnetically induced transparency.<br />

These results are observed for the first time and are obtained in a range<br />

of several decades for the power of both the probe and the coupling laser.<br />

Since our apparatus is highly sensitive for dispersion measurements, we<br />

are able to present the first results of the coupling laser (parametric)<br />

dispersion as a function of the detuning of the probe laser in the same<br />

closed degenerate two level transition. The coupling laser shows positive<br />

parametric dispersion, which grows to a maximum and then decreases<br />

as a function of laser powers. The dispersion of the probe laser around<br />

the EIA peak is on the contrary negative but shows a similar behaviour<br />

as a function of the laser powers. A brighter negative dispersion signal<br />

superimposed on the previous one is observed at low laser powers.<br />

Q 40.6 Do 17:45 HS 204<br />

Coherent Population Trapping with Variable Doppler Sensitivity<br />

— •Christian Bolkart 1,2 , Danijela Rostahar 1,2 und Martin<br />

Weitz 1,2 — 1 Physikalisches Institut — 2 Auf der Morgenstelle 14; 72076<br />

Tuebingen<br />

Coherent population trapping is a resonance phenomenon which is of<br />

large current interest in the context of slow light, quantum computing<br />

and magnetometry. In a three-level system with two stable ground states<br />

and one spontaneously decaying upper state driven by two laser fields,<br />

atoms can be pumped into a ”dark” coherent superposition of the ground<br />

states. This dark state does not interact anymore with the laser field.<br />

We have studied dark resonances in a thermal gas of rubidium atoms<br />

using a variable angle between the two driving optical beams. The angle<br />

was tuned between a Doppler-free situation (zero angle) and angle near<br />

10 ( − 3) radians, the latter corresponding to the Doppler-sensitivity of a<br />

far infrared photon. We find that the amplitude of the dark resonance<br />

is close to the Doppler-free case as long as the Doppler-effect does not<br />

contribute significantly to the linewidth, but decreases rapidly for larger<br />

angles. We have furthermore recorded similar spectra using rubidium<br />

cells with neon buffer gas, which allows us to investigate the Dicke-effect<br />

in a new regime.<br />

Q 40.7 Do 18:00 HS 204<br />

Slow light by means of spectral hole burning in atomic vapor —<br />

•Jürgen Appel and Alexander I. Lvovsky — Fachbereich Physik<br />

M559, Universität Konstanz<br />

In a Doppler-free spectroscopy setup a rubidium vapor cell is subjected<br />

to two counterpropagating laser beams. The saturating beam creates narrow<br />

spectral holes (of approximately the natural linewidth) in the weaker<br />

signal beam’s Doppler-broadened absorption spectrum. A strong dispersion<br />

leads to a large reduction of the signal pulse’s group velocity at the<br />

transmission peaks and negative group velocities at their edges. Group<br />

indices of order 10 3 with less than 70% absorption have been obtained.

Hurra! Ihre Datei wurde hochgeladen und ist bereit für die Veröffentlichung.

Erfolgreich gespeichert!

Leider ist etwas schief gelaufen!