16.01.2013 Aufrufe

aktualisiertes pdf - DPG-Tagungen

aktualisiertes pdf - DPG-Tagungen

aktualisiertes pdf - DPG-Tagungen

MEHR ANZEIGEN
WENIGER ANZEIGEN

Sie wollen auch ein ePaper? Erhöhen Sie die Reichweite Ihrer Titel.

YUMPU macht aus Druck-PDFs automatisch weboptimierte ePaper, die Google liebt.

Q 42.5 Do 17:30 HS 223<br />

Spatial and temporal control of optical near field distributions<br />

using femtosecond polarization pulse shaping — •W. Pfeiffer 1 ,<br />

F.J. Garcia de Abajo 2 , and T. Brixner 3 — 1 Universität Würzburg,<br />

Physikalisches Institut EP1, 97074 Würzburg, Germany — 2 Centro<br />

Mixto CSIC-UPV/EHU, 20080 San Sebastian, Spain — 3 University of<br />

California at Berkeley, Department of Chemistry, Berkeley, CA 94720,<br />

USA<br />

Optical near-field distributions are at the center of experimental techniques<br />

such as scanning photon tunneling microscopy (STM) or near-field<br />

two-photon fluorescence microscopy. Ultrahigh spatial resolution is provided<br />

by making use of the optical field enhancement in the vicinity of a<br />

sharp tip. We simulate the field distribution near an STM tip/sample geometry<br />

under the irradiation with polarization-shaped femtosecond laser<br />

pulses by means of the boundary-element method. This allows for the<br />

first time to shape all three mutually orthogonal polarization components<br />

of a femtosecond light pulse in a complex fashion. Using an evolutionary<br />

algorithm, nonlinear signals and contrast ratios at specific points in<br />

space can be enhanced by optimized light pulses. Apart from applications<br />

in the above-mentioned near-field techniques, this offers the possibility<br />

for three-dimensional quantum control on surface-adsorbed molecules,<br />

accessing 3D wavefunction properties with light fields optimized in all<br />

three polarization directions and along three spatial coordinates.<br />

Q 42.6 Do 17:45 HS 223<br />

Carrier-Envelope Phase Measurement using a Non Phase<br />

Stable Laser — •Matthias Lezius 1,2 , Kevin O’Keeffe 1 , Peter<br />

Jöchl 1 , Herwig Drexel 2 , Verena Grill 2 , and Ferenc Krausz 1<br />

— 1 Institut für Photonik, Technische Universität Wien, Gusshausstr.<br />

27/387, A-1040 Wien — 2 Institut für Ionenphysik, Universität<br />

Innsbruck,Technikerstr. 25, A-6020 Innsbruck<br />

We demonstrate that the phase between the carrier and the pulse envelope<br />

of a few-cycle laser pulse can be retrieved from non phase stable<br />

laser systems, provided that such laser pulses are about 5 fs long and the<br />

repetition rate is in the order of 1kHz. Our approach is based on online<br />

determination of the phase using f − 2f interferometry. By a comparison<br />

of the self referencing interferometric signal with the photoelectron<br />

current emitted into a 7 degree solid angle parallel to the laser polarization<br />

we obtain the absolute value of the carrier envelope phase provided<br />

that Coulomb correction for electron energies below 10eV can be taken<br />

correctly into account.<br />

Q 42.7 Do 18:00 HS 223<br />

Determination of the carrier-envelope phase of ultrashort laser<br />

pulses using metal surfaces — •C. Lemell 1 , P. Dombi 2 , X.-M.<br />

Tong 3 , F. Krausz 2 , and J. Burgdörfer 1 — 1 Inst. f. Theoretical<br />

Physics, Vienna University of Technology — 2 Photonics Inst., Vienna<br />

University of Technology — 3 Dept. of Physics, Kansas State University<br />

Q 43 Biophotonik und Laser in der Medizin<br />

Many results of ultrashort-laser matter experiments strongly depend<br />

on the relative phase ϕ of the field oscillations with respect to the peak<br />

of the laser pulse. Until recently, determination of ϕ was limited by a<br />

±π ambiguity and restricted to high-energy (≫ 1 µJ) pulses. Control<br />

mechanisms for pulses at moderate intensity levels were missing. Our<br />

simulations of ultrashort laser pulses interacting with metal surfaces<br />

based on time dependent density functional theory [1] indicate that<br />

photoemission from surfaces, especially in the multiphoton regime<br />

(I < 10 13 W/cm 2 ), might be a promising candidate for measuring ϕ<br />

for pulse durations τ shorter than 10 fs. To better understand this<br />

surprising result we set up a classical trajectory Monte Carlo simulation<br />

of the process including photon absorption by conduction band electrons<br />

giving insight into the relative importance of underlying mechanisms.<br />

First experiments [2] support out predictions.<br />

This work has been supported by Fonds zur Förderung der wissenschaftlichen<br />

Forschung under project no. FWF-SFB016.<br />

[1] C. Lemell et al., Phys. Rev. Lett. 90, 076403 (2003).<br />

[2] A. Apolonsky et al., submitted to Phys. Rev. Lett. (2003).<br />

Gruppenbericht Q 42.8 Do 18:15 HS 223<br />

Phase-locked chirped pulse optical parametric amplification<br />

of 12 fs pulses from a Ti:sapphire oscillator — •Jens Biegert,<br />

Christoph P. Hauri, Philip Schlup, and Ursula Keller —<br />

Physik Department, Swiss Federal Institute of Technology (ETH),<br />

Zürich, Switzerland<br />

We present first results of direct chirped pulse optical parametric amplification<br />

of 12-fs, 1.7 nJ pulses from a phase-locked Ti:sapphire oscillator.<br />

The interaction is modeled with a 3D code and experimental<br />

parameters agree well with the simulation. Preliminary experimental results<br />

showed amplified spectra spanning a bandwidth of 160 nm with an<br />

energy of 85 µJ (0.9 mJ pump at 400 nm), supporting a transform limited<br />

pulse duration of 9.8 fs. Compression only led to 28 fs pulses, measured<br />

with SPIDER, due to the limited optics bandpass (48 nm, supporting<br />

21 fs) in our setup. Furthermore, we could confirm that the phase-lock<br />

of the oscillator pulses is conserved in the amplification process, hence<br />

this technique can potentially give access to phase-locked, high-energy<br />

few-cycle pulses.<br />

Zeit: Donnerstag 16:30–18:30 Raum: HS 224<br />

Q 43.1 Do 16:30 HS 224<br />

A single-nanoparticle biosensor based on light scattering<br />

spectroscopy — •Gunnar Raschke 1 , Sandra Brogl 1 , Stefan<br />

Kowarik 1 , Thomas Franzl 1 , Carsten Sönnichsen 1 , Thomas<br />

A. Klar 1 , Jochen Feldmann 1 , Alfons Nichtl 2 , and Konrad<br />

Kürzinger 2 — 1 Photonics and Optoelectronics Group, Physics<br />

Department and Center for NanoScience, Ludwig-Maximilians-<br />

Universität, Amalienstr. 54, 80799 Munich — 2 Roche Diagnostics<br />

GmbH, Nonnenwald 2, 82372 Penzberg<br />

We present a novel biosensor for the optical detection of molecular<br />

binding events based on scattering spectroscopy of single functionalized<br />

gold nanoparticles.<br />

The scattering spectrum of a gold metal nanoparticle shows a distinct<br />

resonance in the visible due to a collective oscillation of its conduction<br />

band electrons. The spectral position of this nanoparticle plasmon resonance<br />

(NPPR) depends sensitively on the dielectric properties of the<br />

particle’s immediate surrounding. Molecular binding events inside this<br />

nanoenvironment alter the refractive index and can therefore be deduced<br />

from a shifted plasmon resonance position.<br />

We monitor the homogenous NPPR spectrum of a single gold nanoparticle<br />

which allows us to detect spectral shifts of only a few meV. There-<br />

127<br />

fore, less than 200 molecules with a molecular weight of only 50 000 D can<br />

be detected under physiological conditions. We demonstrate this concept<br />

using gold nanoparticles functionalized with biotin to detect streptavidin<br />

molecules [1].<br />

[1] G. Raschke et al., Nano Letters, 3, 935 (2003).<br />

Q 43.2 Do 16:45 HS 224<br />

Mikrobewegungsanalyse an lebenden Zellen und Kleinstlebewesen<br />

mit photorefraktiven Neuigkeitsfiltern — •Vishnu Vardhan<br />

Krishnamachari, Oliver Grothe, Hendrik Deitmar und Cornelia<br />

Denz — Institut für Angewandte Physik, Westfälische Wilhelms<br />

Universität Münster, D-48149 Münster<br />

Im Rahmen der Biophotonik müssen Methoden entwickelt werden, mit<br />

denen Zellfunktionen in vivo kontinuierlich beobachtet werden können.<br />

Hier stellen wir ein Mikroskop mit einem photorefraktiven Neuigkeitsfilter<br />

vor. Es basiert auf Strahlkopplung in photorefraktiven Kristallen<br />

und reagiert auf Intensitäts- und Phasenänderungen. Es können sowohl<br />

die Bewegung als auch die Veränderung kleinster Objekte kontinuierlich<br />

beobachtet werden. Im Vergleich zu anderen Methoden der Bewegungsdetektion<br />

ist keine weitere Präparation der Objekte notwendig und es<br />

reichen sehr geringe Lichtintensitäten. Im Falle teilweise transparenter

Hurra! Ihre Datei wurde hochgeladen und ist bereit für die Veröffentlichung.

Erfolgreich gespeichert!

Leider ist etwas schief gelaufen!