16.01.2013 Aufrufe

aktualisiertes pdf - DPG-Tagungen

aktualisiertes pdf - DPG-Tagungen

aktualisiertes pdf - DPG-Tagungen

MEHR ANZEIGEN
WENIGER ANZEIGEN

Erfolgreiche ePaper selbst erstellen

Machen Sie aus Ihren PDF Publikationen ein blätterbares Flipbook mit unserer einzigartigen Google optimierten e-Paper Software.

Q 44 Gruppenberichte Quantengase<br />

Zeit: Donnerstag 16:30–18:30 Raum: HS 225<br />

Gruppenbericht Q 44.1 Do 16:30 HS 225<br />

Realization of an Atom Laser based on Bose-Einstein condensates<br />

in magneti field insensitive states — •Giovanni Cennini,<br />

Gunnar Ritt, Carsten Geckeler, and Martin Weitz —<br />

Physikalisches Institut der Universität Tübingen, Auf der Morgenstelle<br />

14, 72076 Tübingen Germany.<br />

A novel type of atom laser is realized by all optical techniques [1]. Our<br />

experiment is based on a Bose-Einstein condensate (BEC) of atoms generated<br />

by direct evaporative cooling of atoms in a single beam optical<br />

dipole trap. The atoms are in mF = 0 Zeeman state, making this atom<br />

laser insensitive to stray magnetic fields.<br />

In our apparatus, cold rubidium atoms are initially prepared in a<br />

magneto-optical trap and then transferred to a CO2-laser optical dipole<br />

trap. Such optical traps offer a state-independent confinement, allowing<br />

for studies of atomic systems which cannot be stored in magnetic traps,<br />

such as multiple spin-states. Evaporation to a BEC is achieved by continuously<br />

lowering the trapping potential depth. This generates a spinor<br />

condensate with 1.2 ×10 4 atoms distributed among the different Zeeman<br />

states of the hyperfine ground state F = 1. When a moderate magnetic<br />

gradient is applied, the atoms condense into a field insensitive mF = 0<br />

Zeeman state alone. Once the degenerate regime is achieved, the trapping<br />

potential is smoothly lowered until gravity couples out condensed atoms.<br />

The stability of the generated coherent, monoenergetic beam is limited<br />

only by trapping laser intensity fluctuations.<br />

Gruppenbericht Q 44.2 Do 17:00 HS 225<br />

Coherent matter waves near surfaces — •Peter Krüger 1 ,<br />

Stephan Wildermuth 1 , Sebastian Hofferberth 1 , Mauritz<br />

Andersson 1 , Sönke Groth 1,2 , Elmar Haller 1 , Leonardo<br />

Della Pietra 1 , Mihael Brajdic 1 , Israel Bar-Joseph 2 , and<br />

Jörg Schmiedmayer 1 — 1 Physikalisches Institut, Universität<br />

Heidelberg, 69120 Heidelberg — 2 Weizmann Institut, Rehovot, Israel<br />

Surface mounted current and charge carrying structures can be used<br />

to tailor a great variety of different micro-potentials for neutral atoms. In<br />

analogy to electronic chips, atom chips for the controlled manipulation<br />

of matter waves can be formed. At this stage, a number of atom-optical<br />

tools, such as traps, guides, and beam splitters have been developed and<br />

tested in the laboratory, and experiments in different fields of physics<br />

have become possible.<br />

Here, we report on our investigations with Bose-Einstein condensates<br />

(BEC) and ultracold thermal atoms just above the critical condensation<br />

temperature. Surface disorder potentials are studied with atoms that are<br />

separated from a conductor surface by tens of microns down to a few<br />

microns. We will present results for stationary traps as well as matter<br />

wave guides in which the atoms are transported in a controlled way.<br />

The extreme sensitivity of dilute BECs to any potential roughness allows<br />

to characterize the surface potential with high precision. From our<br />

Q 45 Quanteninformation IV<br />

experiments, the high demands on the chip fabrication become apparent<br />

and the possibilities for coherent manipulation of matter waves can be<br />

judged. This is of particular relevance for the implementation of elementary<br />

quantum processors on atom chips.<br />

Gruppenbericht Q 44.3 Do 17:30 HS 225<br />

Physik mit Spinor Bose-Einstein Kondensaten — •Holger<br />

Schmaljohann, Michael Erhard, Jochen Kronjäger, Christoph<br />

Becker, Thomas Garl, Kai Bongs und Klaus Sengstock<br />

— Institut für Laserphysik, Universität Hamburg, Luruper Chaussee<br />

149, 22761 Hamburg, Germany<br />

Durch die geringe kinetische Energie werden in ultrakalten Quantengasen<br />

- speziell in Bose-Einstein Kondensaten - Spindynamik, d.h. magnetische<br />

Effekte, sichtbar. Damit werden erstmals Vergleiche allgemeiner magnetischer<br />

Wechselwirkungen von Festkörpersystemen bis hin zu Gasen<br />

möglich. Wir geben einen Überblick über unsere aktuellen experimentellen<br />

und theoretischen Ergebnisse zu den statischen und dynamischen<br />

magnetischen Eigenschaften von 87 Rb Bose-Einstein Kondensaten. Wir<br />

präsentieren Messungen zum Grundzustand von 87 Rb, die in der F=1<br />

Hyperfein-Mannigfaltigkeit ferromagnetisches und in der F=2 Mannigfaltigkeit<br />

antiferromagnetisches Verhalten zeigen [1]. Zudem diskutieren<br />

wir das reichhaltige Wechselspiel zwischen kohärenter Dynamik und inkohärenter<br />

Spindynamik durch Thermalisierungseffekte.<br />

[1] H. Schmaljohann et al., cond-mat/0305497.<br />

Gruppenbericht Q 44.4 Do 18:00 HS 225<br />

Low dimensional Bose gases in optical lattices — •Michael<br />

Köhl, Thilo Stöferle, Henning Moritz, Christian Schori, and<br />

Tilman Esslinger — Institut für Quantenelektronik, ETH Zürich, CH-<br />

8093 Zürich<br />

We report on the realization and investigation of one-dimensional<br />

trapped Bose gases in the mean-field and in the strongly interacting<br />

regime. In the weakly interacting mean-field regime we have characterized<br />

the gas by measuring collective excitations and we find the ratio<br />

of the frequencies of the lowest compressional (breathing) mode and<br />

the dipole mode to be (ωB/ωD) 2 � 3.1. For a thermal gas we measure<br />

(ωB/ωD) 2 � 4 [1]. By adding a periodic potential along the axis of the<br />

1D gas we can tune the gas from a strongly interacting superfluid into<br />

the Mott-insulating phase. We study the gas by Bragg spectroscopy and<br />

find that the excitation spectra cannot be understood by Bogoliubov<br />

theory [2]. The excitation spectra of both phases are compared to the<br />

three-dimensional gas and to the crossover regime from one to three dimensions.<br />

The coherence properties of the gas in all configurations are<br />

measured quantitatively.<br />

[1] H. Moritz et al., to appear in Phys. Rev. Lett.<br />

[2] T. Stöferle et al., preprint 2003.<br />

Zeit: Freitag 11:00–13:00 Raum: HS 101<br />

Gruppenbericht Q 45.1 Fr 11:00 HS 101<br />

Entanglement of a single photon with an atom-cavity system —<br />

•T. Legero, T. Wilk, M. Hennrich, A. Kuhn, and G. Rempe —<br />

Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, 85748<br />

Garching, Germany<br />

The coalescence of two identical photons superposed on a 50/50 beamsplitter<br />

is a well known effect [1], for which a time resolved analysis reveals<br />

that it can also be interpreted as a measurement induced entanglement,<br />

followed by an interferometric verification. Because the beamsplitter conceals<br />

the origin of the first detected photon, the remaining photon is projected<br />

into a path-entangled state [2]. We apply this effect to entangle a<br />

single atom with a single photon, and to determine degree and lifetime<br />

of the entanglement.<br />

A strongly coupled atom-cavity system generates two successive singlephoton<br />

wave packets which are long compared to the time resolution of<br />

our detectors [3]. The first photon is sent into a 1100 m long optical fiber<br />

and impinges on a beamsplitter simultaneously with the second photon<br />

that travels along a negligibly short path. Since the coherence time ex-<br />

129<br />

ceeds the photon transit time from the source to the beamsplitter, the<br />

first photodetection induces an entanglement between the photonic field<br />

mode of the fiber and the state of the source atom. This entanglement is<br />

verified in a correlation experiment where the phase of the superposition<br />

state is changed in a controlled manner.<br />

[1] Hong et al.PRL 59, 2044 (1987); Santori et al.Nature 419, 594 (2002)<br />

[2] Legero et al.Appl.Phys.B77, 797 (2003)<br />

[3] Kuhn et al.PRL 89, 67901 (2002)<br />

Q 45.2 Fr 11:30 HS 101<br />

Quantum dot single photon sources: prospects for applications<br />

in linear optics quantum computation — •Alper Kiraz 1 , Mete<br />

Atatüre 2 , and Atac Imamo¯glu 2 — 1 Department Chemie, Ludwig-<br />

Maximilians Universität München, Butenandtstr. 11, D-81377 München,<br />

Germany — 2 Quantenelektronik, ETH-Hönggerberg, HPT G12, CH-8093<br />

Zurich, Switzerland<br />

An optical source that produces single photon pulses on demand has<br />

potential applications in linear optics quantum computation, provided

Hurra! Ihre Datei wurde hochgeladen und ist bereit für die Veröffentlichung.

Erfolgreich gespeichert!

Leider ist etwas schief gelaufen!