16.01.2013 Aufrufe

aktualisiertes pdf - DPG-Tagungen

aktualisiertes pdf - DPG-Tagungen

aktualisiertes pdf - DPG-Tagungen

MEHR ANZEIGEN
WENIGER ANZEIGEN

Erfolgreiche ePaper selbst erstellen

Machen Sie aus Ihren PDF Publikationen ein blätterbares Flipbook mit unserer einzigartigen Google optimierten e-Paper Software.

Q 11.2 Mo 16:45 HS 224<br />

Robust and Efficient Addressing of Single Atoms Using<br />

Adiabatic Passages — •Yevhen Miroshnychenko, Dominik<br />

Schrader, Mkrtych Khudaverdyan, Igor Dotsenko, Stefan<br />

Kuhr, Wolfgang Alt, Arno Rauschenbeutel, and Dieter<br />

Meschede — Institut für Angewandte Physik, Universität Bonn,<br />

Wegelerstr. 8, Bonn, 53115<br />

We have used the method of adiabatic passages to address single neutral<br />

Cs atoms stored in an optical standing wave dipole trap [1]. The<br />

main advantage of the method of adiabatic passages for the purpose of<br />

full population transfer in a two level system, in contrast to resonant<br />

pi-pulses, is its robustness with respect to fluctuations of the amplitude<br />

and the frequency of an external field, and of the resonance frequency of<br />

an atom.<br />

We apply a microwave sweep to the outermost mF magnetic sublevels<br />

of the two hyperfine ground states of Cs. We use a magnetic field gradient<br />

along the dipole trap axis to induce position dependent Zeeman shifts of<br />

hyperfine levels of different atoms in the dipole trap. Setting the central<br />

frequency of the microwave pulse to the Zeeman resonance frequency of a<br />

selected atom we robustly and with near 100% transfer the population of<br />

this atom only out of the string of atoms in the trap. We discuss results<br />

of the numerical simulation and the corresponding experiments [2].<br />

[1] S. Kuhr et. al., Science 293, 278 (2001)<br />

[2] M. Khudaverdyan et. al., in preparation<br />

Q 11.3 Mo 17:00 HS 224<br />

Towards atom-photon entanglement — •Daniel Schlenk 1 ,<br />

Markus Weber 1 , Juergen Volz 1 , Johannes Vrana 1 , Christian<br />

Kurtsiefer 2 , and Harald Weinfurter 1,3 — 1 Sektion Physik der<br />

LMU Muenchen — 2 National University of Singapore — 3 Max-Planck<br />

Institut fuer Quantenoptik, Garching<br />

Conservation of angular momentum during spontaneous decay of a<br />

lambda-type atomic transition generates a spin entangled state between<br />

the atom and the emitted photon. A localized single atom in a far-offresonant<br />

dipole trap offers the opportunity to investigate the non-classical<br />

correlation properties of such an entangled atom-photon state.<br />

In our experiment we load a single Rb87 atom from a sample of laser<br />

cooled atoms into an optical dipole trap. The observed photon antibunching<br />

in the atomic fluorescence light verifies the presence of single<br />

atoms inside our trap. We report on state selective detection measurements<br />

of a single Rb atom using a combination of a dark-state-projection<br />

and a STIRAP technique. This measurement is the key ingredient in order<br />

to analyze the spin correlations and to determine the amount of<br />

entanglement in our atom-photon system.<br />

Q 11.4 Mo 17:15 HS 224<br />

Normal-mode spectrum of a single intracavity atom. —<br />

•T. Puppe, P. Maunz, I. Schuster, N. Syassen, P.W.H.<br />

Pinkse, and G. Rempe — Max-Planck-Institut für Quantenoptik,<br />

Hans-Kopfermann-Str. 1, 85748 Garching, Germany<br />

The normal-mode splitting is the characteristic signature of the fundamental<br />

interaction of an individual atom with a single mode of the light<br />

field. The measurement of the normal-mode spectrum has been complicated<br />

by variations of the mean atom number in beam experiments as<br />

well as fluctuations of the atom-cavity coupling due to atomic motion.<br />

Here, single laser-cooled atoms are trapped in a far-detuned intracavity<br />

dipole trap [1] upon detection. Periods of cavity cooling [2] are sandwitched<br />

between the probe intervals to further localise the atom and<br />

monitor the coupling at the same time. This preparation of a single, well<br />

localised atom strongly coupled to an optical mode allows to measure a<br />

well resolved normal-mode splitting in two ways: The mean transmission<br />

of the near-resonant cavity-QED field represents the cavity excitation<br />

spectrum. Moreover, also the spectrum of the excitation of the atom as<br />

the second component of the strongly coupled system could be measured<br />

for the first time: In the presence of cavity cooling, trap loss is caused<br />

by spontaneously scattered photons. The atomic excitation is therefore<br />

inversely proportional to the storage time.<br />

[1] J. Ye, D.W. Vernooy, and H.J. Kimble, Phys. Rev. Lett. 83, 4987<br />

(1999).<br />

[2] P. Maunz et al., to be published. P. Horak et al. Phys. Rev. Lett. 79,<br />

4974 (1997). V. Vuletić and S. Chu, Phys. Rev. Lett. 84, 3787 (2000).<br />

87<br />

Q 11.5 Mo 17:30 HS 224<br />

Deterministic Control of Atom-Cavity Coupling — •B. Weber,<br />

S. Nußmann, M. Hijlkema, F. Rohde, A. Kuhn, and G. Rempe —<br />

Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, 85741<br />

Garching<br />

We present an experimental setup to achieve deterministic control of<br />

the coupling of a single Rb atom to a high-finesse optical cavity. By means<br />

of an optical dipole force trap made of a single running-wave laser beam<br />

we transport cold atoms from a magneto-optical trap over a distance of 14<br />

mm into the mode volume of the cavity. With the cavity used as an atom<br />

detector, we observe the arrival of the atom cloud as well as characteristic<br />

single-atom transit signals in the transmitted intensity. Trapping the<br />

atoms by means of a standing-wave laser field inside the cavity will allow<br />

us to generate long streams of single photons for quantum information<br />

processing.<br />

Q 11.6 Mo 17:45 HS 224<br />

Kühlung bei positiver Verstimmung — •Ch. Schwedes 1 , Th. Becker<br />

1 , J. von Zanthier 1 , H. Walther 1 und E. Peik 2 — 1 MPI f.<br />

Quantenopik, Hans-Kopfermann-Str. 1, 85748 Graching — 2 PTB, Bundesallee<br />

100, 38116 Braunschweig<br />

Eine experimentelle und theoretische Untersuchung von Laser Seitenbandkühlung<br />

bei positiver Verstimmung eines in einer RF-Falle gespeicherten<br />

Ions für wird präsentiert. Der Einfluß der Mikrobewegung im<br />

zeitabängigen Potential einer Paulfalle kann zu der überraschenden Situation<br />

führen, dass Seitenbandkühlung für positive Werte der Laserverstimmung<br />

möglich wird, das heißt, für eine Laserfrequenz die über der<br />

Resonanzfrequenz des ruhenden Ions liegt. Die Kühlrate und der Einfangbereich<br />

werden in einem semiklassischen Modell berechnet. Experimentelle<br />

Ergebnisse des Effektes werden anhand eines einzelnen In + -Ions<br />

geliefert, das in einer miniaturisierten Paulfalle gespeichert ist.<br />

Q 11.7 Mo 18:00 HS 224<br />

Laser Cooling of an Indium Atomic Beam — •Ruby dela<br />

Torre, Jiayu Wang, Bernard Kloeter, Dietmar Haubrich, Ulrich<br />

Rasbach, and Dieter Meschede — Institut fuer Angewandte<br />

Physik, Universitaet Bonn, Wegelerstr. 8, 53115 Bonn, Germany<br />

Laser cooled atomic beams are the method of choice for Atomic<br />

Nanofabrication (ANF) where high deposition rates are needed. We have<br />

realized the transverse cooling of an Indium atomic beam. One scheme<br />

employs radiation pressure cooling and another scheme involves a bluedetuned<br />

standing-wave configuration. Two-wavelength laser sources, at<br />

410nm and 451nm, were used in both methods. We will present our systematic<br />

studies on these cooling schemes.<br />

Q 11.8 Mo 18:15 HS 224<br />

Real-time measurement of a single ion trajectory — •Pavel Bushev,<br />

Alex Wilson, Jürgen Eschner, and Rainer Blatt — Institut<br />

für Experimentalphysik, Universität Innsbruck, Technikerstraße 25,<br />

A-6020 Innsbruck, Austria<br />

In our experiment a single Ba + ion is held by a Paul trap and continuously<br />

Doppler cooled with a laser. The residual thermal motion of the<br />

ion in the trap has an average amplitude of about 35 nm at a frequency<br />

of 1 MHz. A collimating lens and a distant mirror are placed such that<br />

part of the scattered light is retro-reflected, thus leading to interference<br />

of high contrast. Hence, the phase of the interference fringes are sensitive<br />

to the ion-mirror distance [1]. In this case the photocurrent contains<br />

all the information about the ion’s motion. Its amplitude and phase are<br />

detected with a high signal-to-noise-ratio.<br />

By using a phase-locking technique we are able to observe the ion trajectory<br />

with an accuracy of 10 nm within a measurement time of 10 ms.<br />

We also report first attempts to cool a single atomic particle (the Ba +<br />

ion), beyond the Doppler-cooling-limit using electronic feedback. We create<br />

an additional friction force, which is proportional the ”instantaneous<br />

speed” of the ion in the trap, by supplying additional electric fields along<br />

the direction of the ion’s motion. A dip in the motional spectrum appears<br />

when this external friction force is applied.<br />

[1] J. Eschner et al., Nature 413, 495-498, (2001)<br />

Q 11.9 Mo 18:30 HS 224<br />

Thermisch angeregte Ionen-“Moleküle” — •M. Loewen 1 und<br />

Chr. Wunderlich 2 — 1 I. Institut für Theoretische Physik, Universität<br />

Hamburg, Jungiusstr. 9, 20355 Hamburg — 2 Institut für Laser-Physik,<br />

Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg

Hurra! Ihre Datei wurde hochgeladen und ist bereit für die Veröffentlichung.

Erfolgreich gespeichert!

Leider ist etwas schief gelaufen!