29.06.2016 Views

Thomas Calculus 13th [Solutions]

  • No tags were found...

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Section 7.4 Relative Rates of Growth 533<br />

( )<br />

13. When the degree of f is less than or equal to the degree of g since lim f x<br />

g( x)<br />

0 when the degree of f is smaller<br />

x<br />

( )<br />

than the degree of g, and lim f x a<br />

(the ratio of the leading coefficients) when the degrees are the same.<br />

x<br />

g( x)<br />

b<br />

14. Polynomials of a greater degree grow at a greater rate than polynomials of a lesser degree. Polynomials of the<br />

same degree grow at the same rate.<br />

15.<br />

1<br />

x 1<br />

1<br />

x<br />

ln( x 1) x 1<br />

x<br />

ln x<br />

x x<br />

x 1<br />

x<br />

1<br />

lim lim lim lim 1 and<br />

1<br />

x 999<br />

1<br />

x<br />

ln( x 999)<br />

x<br />

x<br />

ln x<br />

x x<br />

x 999<br />

lim lim lim 1<br />

16.<br />

1<br />

x a<br />

1<br />

x<br />

ln( x a) x 1<br />

x<br />

ln x<br />

x x<br />

x a<br />

x<br />

1<br />

lim lim lim lim 1. Therefore, the relative rates are the same.<br />

17.<br />

10x<br />

1<br />

lim lim<br />

10x<br />

1<br />

x 1<br />

10 and lim lim<br />

x 1<br />

1 1.<br />

x x x<br />

x<br />

x x x<br />

x<br />

conclude that 10x 1 and x 1 have the same growth rate (that of x ).<br />

Since the growth rate is transitive, we<br />

18.<br />

4 4<br />

2 4<br />

x x x x<br />

x x x<br />

lim lim 1 and<br />

x<br />

conclude that<br />

4 3 4 3<br />

2 4<br />

x x x x<br />

x x x<br />

lim lim 1. Since the growth rate is transitive, we<br />

x<br />

4 4 3<br />

2<br />

x x and x x have the same growth rate (that of x ).<br />

19.<br />

n<br />

n 1<br />

x nx n!<br />

x<br />

x<br />

e x<br />

x<br />

e x<br />

x<br />

e<br />

lim lim lim 0<br />

n<br />

x<br />

x o e for any non-negative integer n<br />

n<br />

n 1<br />

20. If p( x) an<br />

x an<br />

1x a1x a 0,<br />

then<br />

p( x) 1<br />

lim a n<br />

n<br />

lim<br />

x a lim<br />

x a lim<br />

x a lim<br />

1<br />

where each limit is zero (from Exercise<br />

21. (a)<br />

n n 1 ex 1 0<br />

x e x e x x e x e<br />

p( x)<br />

x<br />

lim 0<br />

x<br />

x e<br />

x x x x<br />

19). Therefore,<br />

e grows faster than any polynomial.<br />

1/ n (1 )/ 1 1/ 1/<br />

lim<br />

x<br />

x n n n n<br />

lim lim ln<br />

ln<br />

1<br />

x<br />

x<br />

x n n<br />

n<br />

x<br />

6<br />

6<br />

17,000,000 17 10 1/10 17<br />

e e e<br />

x x o x for any positive integer n<br />

(b) ln 17,000,000 24,154,952.75<br />

15<br />

(c) x 3.430631121 10<br />

15 15<br />

(d) In the interval 3.41 10 ,3.45 10 we have<br />

ln x 10ln(ln x ). The graphs cross at about<br />

15<br />

3.4306311 10 .<br />

22.<br />

lim<br />

ln x<br />

lim<br />

1/ x<br />

n<br />

ln x<br />

x x x nx n 1<br />

1<br />

n n 1<br />

a<br />

1 1 0 lim n 1<br />

a<br />

1<br />

a<br />

0 a n<br />

n<br />

n n a<br />

x<br />

n n<br />

x x<br />

x<br />

n 1<br />

x<br />

n<br />

lim lim 0 ln x grows slower<br />

x<br />

a x a x a x a a nx<br />

than any non-constant polynomial ( n 1)<br />

Copyright<br />

2014 Pearson Education, Inc.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!