29.06.2016 Views

Thomas Calculus 13th [Solutions]

  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Chapter 14 Additional and Advanced Exercises 1079<br />

12.<br />

(2x 3 y) (2x 3 y)<br />

f ( x, y) 6 xye fx<br />

( x, y) 6 y(1 2 x) e 0 and<br />

(2x<br />

3 y)<br />

f y ( x, y) 6 x(1 3 y) e 0 x 0<br />

and y 0, or x 1 and y 1<br />

2<br />

3 . The value f (0, 0) 0 is on the boundary, and f 1 , 1 1 . On the positive<br />

2 3 2<br />

e<br />

y -axis, f (0, y ) 0, and on the positive x -axis, f ( x , 0) 0. As x or y we see that f ( x, y) 0.<br />

Thus the absolute maximum of f in the closed first quadrant is 1<br />

2<br />

e<br />

at the point 1 , 1 .<br />

2 3<br />

13. Let<br />

2 2 2<br />

y<br />

2 2 y<br />

f ( x, y , z) x z 1 f x i j 2z<br />

k an equation of the plane tangent at the point<br />

2 2 2 2 2 2<br />

a b c a b c<br />

P0 ( x0, y0, y 0 ) is<br />

intercepts of the plane are<br />

x0 y0 z0 2<br />

x0 2<br />

y0 2<br />

z0<br />

2 2 2 2 2 2<br />

2 2 2 2 2 2<br />

x0 y0 z0<br />

x y z 2 or x y z 1. The<br />

2 2 2<br />

a b c a b c<br />

a b c<br />

2 2<br />

a , 0, 0 , 0, b , 0 and<br />

x<br />

y<br />

0 0<br />

2<br />

0, 0, c<br />

z<br />

. The volume of the tetrahedron formed by the<br />

2 2 2<br />

plane and the coordinate planes is V 1 1 a b c we need to maximize<br />

3 2 x y z<br />

2<br />

( abc) 1<br />

V ( x, y, z) ( xyz ) subject to the constraint<br />

6<br />

2<br />

( abc) 1 2x<br />

6 2<br />

x yz<br />

2<br />

a<br />

,<br />

2<br />

( abc) 1 2 y<br />

6 2<br />

xy z<br />

2<br />

b<br />

0 0 0<br />

,<br />

0<br />

2 2 2<br />

y<br />

f ( x, y, z ) x z 1. Thus,<br />

2 2 2<br />

a b c<br />

and<br />

2<br />

( abc) 1 2z<br />

6<br />

2<br />

xyz<br />

2<br />

c<br />

. Multiply the first equation by<br />

2<br />

2<br />

2<br />

2 2 2 2<br />

a yz , the second by b xz , and the third by c xy . Then equate the first and second a y b x<br />

b<br />

2 2 2 2<br />

y x, x 0; equate the first and third a z c x z c x, x 0; substitute into<br />

a<br />

a<br />

3<br />

f ( x , y , z ) 0 x a y b z c V abc<br />

3 3 3 2<br />

.<br />

14. 2( x u) , 2( y v) , 2( x u ) , and<br />

2( y v) 2 v x u v y, x u , and<br />

2<br />

y v v x u v v 1 or 0.<br />

2 2<br />

CASE 1: 0 x u, y v , and 0; then y x 1 v u 1 and<br />

2 2<br />

v u v v<br />

2 1 1 4<br />

v v 1 0 v no real solution.<br />

2<br />

CASE 2: 1<br />

2<br />

v and u v u 1 ; x 1 1 y and y x 1 x 1 x 1 2x 1 x 1<br />

2<br />

4 4 2<br />

4 2 4 8<br />

y 7<br />

8 .<br />

2 2 2<br />

Then f 1 , 7 , 1 , 1 1 1 7 1 2 3 the minimum distance is 3 2. (Notice that f has no<br />

8 8 4 2 8 4 8 2 8<br />

8<br />

maximum value.)<br />

15. Let ( x0 , y 0)<br />

be any point in R. We must show lim f ( x, y) f ( x0 , y 0)<br />

or, equivalently that<br />

( x, y) ( x0 , y0)<br />

lim f ( x0 h, y0 k) f ( x0 , y 0) 0. Consider f ( x0 h, y0 k) f ( x0, y0)<br />

( h, k) (0, 0)<br />

f ( x0 h, y0 k) f ( x0, y0 k) f ( x0, y0 k) f ( x0, y 0 ) . Let F( x) f ( x, y0<br />

k ) and apply the<br />

Mean Value Theorem: there exists with x0 x0<br />

h such that F ( ) h F( x0 h) F( x0<br />

)<br />

hfx ( , y0 k ) f ( x0 h , y0 k ) f ( x0 , y0<br />

k ). Similarly, k f y ( x0 , ) f ( x0 , y0 k ) f ( x0 , y 0 ) for<br />

some with y0 y0 k . Then f ( x0 h, y0 k) f ( x0 , y0 ) hfx<br />

( , y0 k) + k f y ( x 0, ) . If M, N are<br />

positive real numbers such that | fx|<br />

M and f y N for all ( x, y ) in the<br />

xy -plane, then<br />

1<br />

Copyright<br />

2014 Pearson Education, Inc.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!