29.06.2016 Views

Thomas Calculus 13th [Solutions]

  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

214 Chapter 3 Derivatives<br />

CHAPTER 3<br />

ADDITIONAL AND ADVANCED EXERCISES<br />

1. (a) sin 2 2sin cos d (sin 2 )<br />

d<br />

2 2<br />

cos 2 cos sin<br />

2 2<br />

(b) cos 2 cos sin d (cos 2 )<br />

d<br />

d<br />

(2sin cos ) 2cos 2<br />

d 2 2<br />

(cos sin )<br />

d<br />

d<br />

2sin 2 (2cos )( sin ) (2sin )(cos )<br />

sin 2 cos sin sin cos sin 2 2sin cos<br />

2[(sin )( sin ) (cos )(cos )]<br />

2. The derivative of sin ( x a) sin x cos a cos xsin<br />

a with respect to x is cos( x a) cos x cos a sin xsin a,<br />

2<br />

which is also an identity. This principle does not apply to the equation x 2x 8<br />

2<br />

0, since x 2x 8 0 is<br />

not an identity: it holds for 2 values of x ( 2 and 4), but not for all x.<br />

2<br />

3. (a) f ( x) cos x f ( x ) sin x f ( x ) cos x, and g( x)<br />

a bx cx g ( x ) b 2 cx g ( x ) 2 c;<br />

also, f (0) g (0) cos(0) a a 1; f (0) g (0) sin(0) b b 0; f (0) g (0)<br />

cos(0) 2c c 1<br />

2 . Therefore, g( x) 1 1 x<br />

2 .<br />

2<br />

(b) f ( x) sin( x a) f ( x ) cos( x a), and g( x ) bsin x c cos x g ( x) b cos x c sin x ; also<br />

f (0) g(0) sin( a ) bsin(0) c cos(0) c sin a; f (0) g (0) cos( a) b cos(0) csin(0)<br />

b cos a . Therefore, g( x) sin x cos a cos xsin a.<br />

(4)<br />

2<br />

(c) When f ( x) cos x, f ( x)<br />

sin x and f ( x ) cos x; when g( x)<br />

1<br />

(4)<br />

1 x , g ( x)<br />

0 and g ( x) 0.<br />

2<br />

Thus f (0) 0 g (0) so the third derivatives agree at x 0 . However, the fourth derivatives do not<br />

(4) (4)<br />

agree since f (0) 1 but g (0) 0. In case (b), when f ( x) sin( x a ) and<br />

g( x) sin x cos a cos xsin<br />

a , notice that f ( x) g( x ) for all x, not just x 0. Since this is an identity, we<br />

( n) ( n)<br />

have f ( x) g ( x ) for any x and any positive integer n.<br />

4. (a) y sin x y cos x y sin x y y sin x sin x 0; y cos x y sin x<br />

y cos x y y cos x cos x 0; y a cos x bsin<br />

x y asin x b cos x<br />

y a cos x bsin<br />

x y y ( a cos x bsin x ) ( a cos x bsin x) 0<br />

(b) y sin(2 x)<br />

y 2cos(2 x)<br />

y 4sin(2 x)<br />

y 4y 4sin(2 x) 4sin(2 x ) 0. Similarly,<br />

y cos(2 x) and y a cos(2 x) bsin(2 x ) satisfy the differential equation y 4y 0. In general,<br />

2<br />

y cos( mx),<br />

y sin( mx) and y a cos ( mx) bsin ( mx ) satisfy the differential equation y m y<br />

0.<br />

2 2 2 2<br />

5. If the circle ( x h) ( y k)<br />

a and y x 1 are tangent at (1, 2), then the slope of this tangent is<br />

m 2x 2 and the tangent line is y 2 x . The line containing (h, k) and (1, 2) is perpendicular to<br />

(1, 2)<br />

y 2 x k 2 1<br />

2 2 2<br />

h 5 2k the location of the center is (5 2 k, k). Also, ( x h) ( y k)<br />

a<br />

h 1 2<br />

2<br />

2<br />

1 ( )<br />

x h ( y k)<br />

y 0 1 ( y ) ( y k)<br />

y 0 y y<br />

.<br />

k y<br />

At the point (1, 2) we know y 2 from the<br />

tangent line and that y 2 from the parabola. Since the second derivatives are equal at (1, 2) we obtain<br />

2<br />

1 (2) 9<br />

2<br />

2<br />

2<br />

2 k . Then h 5 2k 4 the circle is ( x 4) y 9 a . Since (1, 2) lies on the circle<br />

k 2 2<br />

2<br />

5 5<br />

we have that a 2 .<br />

2<br />

6. The total revenue is the number of people times the price of the fare: r( x) xp x 3 x , where 0 x 60.<br />

40<br />

2<br />

The marginal revenue is dr 3 x 2x 3 x 1 dr 3 x 3 x 2x<br />

3 3 x 1 x .<br />

dx 40 40 40 dx 40 40 40 40 40<br />

Then dr 0 x 40 (since x 120 does not belong to the domain). When 40 people are on the bus the<br />

dx<br />

2<br />

marginal revenue is zero and the fare is p (40) 3 x<br />

40<br />

$4.00.<br />

( x 40)<br />

Copyright<br />

2014 Pearson Education, Inc.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!