29.06.2016 Views

Thomas Calculus 13th [Solutions]

  • No tags were found...

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

708 Chapter 10 Infinite Sequences and Series<br />

103. (a) If a 2n 1, then<br />

2<br />

2n 2n 1 and<br />

2 2<br />

4 4 1 2 1 2<br />

b a n n n n n n<br />

2 2 2<br />

2 2 2 2 ,<br />

2<br />

2<br />

c a<br />

2n 2n<br />

1<br />

2 2<br />

2 2 2 2<br />

2<br />

2 4 3 2<br />

a b n n n n n n n n<br />

4 3 2 2<br />

2<br />

2<br />

n n n n n n c<br />

4 8 8 4 1 2 2 1 .<br />

2 1 2 2 4 4 1 4 8 4<br />

(b)<br />

a<br />

2<br />

2<br />

a<br />

2<br />

2<br />

2<br />

2n<br />

2n<br />

2<br />

2n<br />

2n<br />

1<br />

lim lim 1 or<br />

a<br />

a<br />

a<br />

a<br />

2<br />

2<br />

lim lim sin lim sin 1<br />

a<br />

2<br />

2<br />

a<br />

2<br />

104. (a)<br />

1 (2 n) ln 2n<br />

1 0<br />

n n<br />

2n<br />

n<br />

2<br />

n<br />

2n<br />

lim 2 n lim exp lim exp lim exp e 1; n ! 2 n ,<br />

Stirlings approximation<br />

2<br />

2n<br />

n 1 (2 n)<br />

!<br />

n<br />

2<br />

n<br />

e<br />

e<br />

n n for large values of n<br />

n<br />

e<br />

n<br />

(b) n n n!<br />

40 15.76852702 14.71517765<br />

50 19.48325423 18.39397206<br />

60 23.19189561 22.07276647<br />

n<br />

e<br />

105. (a)<br />

n<br />

1<br />

n<br />

c c 1<br />

c<br />

ln 1<br />

n n n cn n cn<br />

(b) For all<br />

lim lim lim 0<br />

c<br />

n<br />

0, there exists an<br />

(ln ) c<br />

N e such that<br />

1 1 1 1<br />

c c c<br />

n n n n<br />

0 lim 0<br />

(ln ) c<br />

ln c<br />

n e ln n ln n ln<br />

1<br />

c<br />

106. Let { a n } and { b n } be sequences both converging to L. Define { c n } by c2n b n and c2n<br />

1 a n , where<br />

n 1, 2, 3, . For all 0 there exists N 1 such that when n N 1 then an<br />

L and there exists N2<br />

such that when n N 2 then bn<br />

L . If n 1 2max{ N1, N 2},<br />

then cn<br />

L , so { c n } converges to L.<br />

107.<br />

108.<br />

n 1 n<br />

1 1 0<br />

n n<br />

n<br />

n n<br />

n<br />

e<br />

lim lim exp ln lim exp 1<br />

1 n<br />

1 0<br />

n<br />

n<br />

lim x lim exp ln x e 1, because x remains fixed while n gets large<br />

n<br />

109. Assume the hypotheses of the theorem and let be a positive number. For all there exists an N 1 such that<br />

when n N 1 then an L an L L a n,<br />

and there exists an N 2 such that when n N2<br />

then cn L cn L cn<br />

L . If n max{ N1, N 2},<br />

then L an bn cn<br />

L<br />

b L lim b L.<br />

n<br />

n<br />

n<br />

110. Let 0. We have f continuous at L there exists so that x L f ( x) f ( L ) . Also,<br />

an<br />

L there exists N so that for n N , an<br />

L . Thus for n N , f ( an<br />

) f ( L)<br />

f ( a ) f ( L).<br />

n<br />

Copyright<br />

2014 Pearson Education, Inc.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!