29.06.2016 Views

Thomas Calculus 13th [Solutions]

  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Section 17.1 Second-Order Linear Equations 1007<br />

αx αx αx<br />

63. Let r1 œ α i " and r2<br />

œ α i " be complex roots. If e cos " x and e sin " x are linearly independent, then e cos " x<br />

is not a constant multiple of e α xsin x (and vice versa). Assume that e α xcos x is a constant multiple of e α x<br />

" " sin " x, then<br />

for some nonzero constant c, e α xcos x c e α xsin x e α xcos x c e α xsin x 0 e α x<br />

" œ " Ê " " œ Ê cos " x c sin " x<br />

œ 0<br />

αx<br />

αx<br />

Ê e œ 0 or cos " x c sin " x œ 0. Since e Á 0 Ê c œ cot " x, thus c is not a constant, which is a contridiction.<br />

αx<br />

αx<br />

Thus e cos " x and e sin " x are linearly independent.<br />

ww w w w w<br />

1 2 3 1 2 3 1 2<br />

64. Let y and y be linearly independent solutions of Pxy Qxy Rxy œ 0. Let y œ y y Ê y œ y y<br />

ww ww ww ww w ww ww w w<br />

Ê y3 œ y1 y 2. Then Pxy3 Qxy3<br />

Rxy3 œ Pxy1 y2Qxy1 y2Rxy1 y2<br />

ww ww w w<br />

œ Pxy1 Pxy2 Qxy1 Qxy2 Rxy1 Rxy2<br />

ww w ww w w w w<br />

œ Pxy1 Qxy1 Rxy1 Pxy2 Qxy2 Rxy2 œ 00 œ 0. Let y4 œ y1 y2 Ê y4<br />

œ y1 y2<br />

ww ww ww ww w ww ww w w<br />

Ê y4 œ y1 y 2. Then Pxy4<br />

Qxy4 Rxy4 œ Pxy1 y2Qxy1 y2Rxy1 y2<br />

ww ww w w<br />

œ Pxy1 Pxy2 Qxy1 Qxy2 Rxy1 Rxy2<br />

ww w ww w<br />

œ Pxy1 Qxy1 Rxy1 cPxy2 Qxy2<br />

Rxy2d<br />

œ 0 0 œ 0. Thus y 3 and y 4 are both solutions.<br />

Suppose that y 3 is a constant multiple of y 4, then there is a nonzero constant c such that y3 œ c y 4.<br />

Ê y y œ c y y . If we solve this equation for y we obtain y œ 1 <br />

c y Ê y is a constant multiple of y ,<br />

1 2 1 2 1 1 1 c 2 "<br />

2<br />

which is a contradiction since y 1 and y 2 are linearly independent Ê y1 y 2 and y1 y 2 are linearly independent.<br />

ww 2 0†<br />

x<br />

1<br />

65. (a) y 4y œ 0, y0 œ 0, y œ 1 Ê r 4 œ 0 Ê r œ !„ 2i Ê y œ e c1cos 2x c2sin 2x<br />

Ê y œ c1cos 2x c2sin 2x; y0<br />

œ 0 Ê c1 œ 0, and y1<br />

œ 1 Ê c1<br />

œ 1 Ê no solution<br />

ww 2 0†<br />

x<br />

(b) y 4y œ 0, y0 œ 0, y1 œ 0 Ê r 4 œ 0 Ê r œ !„ 2i Ê y œ e c1cos 2x c2sin 2x<br />

Ê y œ c1cos 2x c2sin 2x; y0<br />

œ 0 Ê c1 œ 0, and y1<br />

œ 0 Ê c1 œ 0 Ê c1 œ 0, c 2 can be any real number<br />

Ê y œ c 2 sin2x<br />

b„ Èb 4ac b Èb 4ac<br />

2a 2a 2a<br />

# #<br />

66. Let a, b, and c be positive constants, then r œ œ „ . There are three cases to consider.<br />

#<br />

Case I: Two distinct real solutions Ê b 4ac 0. Since a, b, and c are positive Ê 4ac 0 and b 0<br />

Ê 4ac 0 and b 0 Ê 0 b # 4ac b # Ê 0 Èb # 4ac b Ê b Èb # 4ac<br />

!<br />

È # b„ Èb 4ac bÈb 4ac<br />

2a<br />

1 2a<br />

# #<br />

and b b 4ac !. Since 2a 0 Ê 0. Thus r œ 0 and<br />

È #<br />

b<br />

b 4ac<br />

1 2<br />

r2 œ<br />

2a<br />

0. The general solution to the differential equation is y œ c1e c2e .<br />

rx 1 rx 2<br />

lim ce ce œ 00œ<br />

0.<br />

1 2<br />

xÄ∞ #<br />

Case II: One repeated real solution Ê b 4ac œ 0. Since a, b, and c are positive Ê # a 0 and b 0<br />

b<br />

Ê r œ 2a 0. The general solution to the differential equation is y œ c1e c2x e . Since<br />

r 0Ê r 0. lim rx rx<br />

ce cxe œ lim ˆ rx cx 2 rx<br />

ce ‰ cx<br />

œ lim ce lim ˆ 2 ‰<br />

<br />

<br />

xÄ∞ 1 2<br />

xÄ∞ 1 e rx<br />

xÄ∞ 1<br />

xÄ∞<br />

e rx<br />

œ 0 lim ˆ c ‰ œ 0, using L'hopital's rule to evaluate the limit of the second expression.<br />

xÄ∞ re<br />

2 rx<br />

# #<br />

Case III: Two complex, nonreal solutions Ê b 4ac 0 Ê 4ac b 0. Since a, b, and c are positive Ê # a 0 and<br />

b b È4acb b È4acb<br />

b<br />

2a 1 2a 2a 2 2a 2a 2a<br />

# #<br />

b 0 Ê 0. The roots are r œ i and r œ i, thus α œ 0 and<br />

È 4ac b<br />

" œ 0. The general solution to the differential equation is y œ e α #<br />

2a<br />

c"<br />

cos " x c2sin " x . Since<br />

1 Ÿ sin " x Ÿ 1 and 1 Ÿ cos " x Ÿ 1 Ê kc# k Ÿ c# sin " x Ÿ kc # k and kc" k Ÿ c" cos " x Ÿ kc"<br />

k<br />

Ê kc" kkc# k Ÿ c" cos" xc# sin"<br />

x Ÿ kc" kkc#<br />

k<br />

αx αx αx<br />

Ê e kc" kkc# k Ÿ e c" cos " x c# sin " x Ÿ e kc" kkc#<br />

k<br />

lim ce αx kc kkc kd œ kc kkc klim e αx œ 0 and lim ce αx kc kkc kd œ kc kkc klim<br />

e αx<br />

œ 0<br />

" # " # " # " #<br />

xÄ∞ xÄ∞ xÄ∞ xÄ∞<br />

α x<br />

thus by the Sandwich theorem, lim ce c" cos " x c#<br />

sin " xd<br />

œ 0.<br />

xÄ∞<br />

x<br />

rx<br />

rx<br />

rx<br />

rx<br />

Copyright © 2010 Pearson Education, Inc. Publishing as Addison-Wesley.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!