29.06.2016 Views

Thomas Calculus 13th [Solutions]

  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

728 Chapter 10 Infinite Sequences and Series<br />

60. (a) s10<br />

10<br />

1<br />

3<br />

1.082036583; 1<br />

b<br />

b<br />

4<br />

dx lim x dx lim x lim 1 1 1<br />

4<br />

4 3<br />

n<br />

11 x<br />

11 3 3 3993 3993<br />

n 1<br />

b b 11 b b<br />

and<br />

3<br />

1<br />

b<br />

b<br />

4<br />

dx lim x dx lim x lim 1 1 1<br />

10<br />

4 3<br />

x b 10 b<br />

3<br />

10 b 3b<br />

3000 3000<br />

1.082036583 1 s 1.082036583 1<br />

3993 3000<br />

1.08229 s 1.08237<br />

(b) s 1 1.08229 1.08237 1.08233; error 1.08237 1.08229<br />

4<br />

n<br />

2<br />

2<br />

n 1<br />

0.00004<br />

61. The total area will be<br />

n<br />

1 1 1 1 1<br />

1<br />

. The p-series converges to<br />

n n n 1 2 n( n 1)<br />

2<br />

1 n 1 n<br />

n 1 n<br />

2<br />

6 and<br />

1<br />

n<br />

n( n<br />

1<br />

1)<br />

converges to 1 (see Example 5). Thus we can write the area as the difference of these two values,<br />

or<br />

2<br />

6<br />

1 0.64493.<br />

62. The area of the nth<br />

trapezoid is<br />

1 1 1 1 1 1 1 1<br />

2 n n 1 n n 1 2 n ( n 1)<br />

2 2<br />

.<br />

The total area will be<br />

1 1 1 1 ,<br />

2 2<br />

2 2<br />

n 1 n ( n 1)<br />

since the series telescopes and has a value of 1.<br />

10.4 COMPARISON TESTS<br />

1<br />

n<br />

n 1<br />

1. Compare with ,<br />

2<br />

which is a convergent p-series since p 2 1. Both series have nonnegative terms for<br />

2 2 1 1<br />

n n 30<br />

n 1. For n 1, we have 30 .<br />

2 2<br />

n n Then by Comparison Test,<br />

2<br />

n 1 n<br />

1<br />

30<br />

converges.<br />

1<br />

n<br />

n 1<br />

2. Compare with ,<br />

3<br />

which is a convergent p-series since p 3 1. Both series have nonnegative terms for<br />

4 4 1 1 n n 1 n n 1<br />

n n 2 n n 2 n n 2 n 2<br />

n 1. For n 1, we have n n 2 . Then by Comparison<br />

4 4 4 4 3 4 4<br />

n<br />

n<br />

n 1<br />

Test,<br />

4<br />

1<br />

2<br />

converges.<br />

3. Compare with<br />

1<br />

,<br />

n 2<br />

n<br />

which is a divergent p-series since p<br />

1<br />

1. Both series have nonnegative terms for<br />

2<br />

n 2. For n 2, we have n 1 n 1 1<br />

. Then by Comparison Test, 1<br />

n<br />

1<br />

n<br />

n<br />

2 n<br />

1<br />

diverges.<br />

Copyright<br />

2014 Pearson Education, Inc.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!