29.06.2016 Views

Thomas Calculus 13th [Solutions]

  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Section 8.7 Numerical Integration 615<br />

26. 24<br />

2<br />

0.019 2(0.020) 2(0.021) 2(0.031) 0.035 4.2 L<br />

27. (a)<br />

(b)<br />

b a 4<br />

2<br />

Es<br />

x M ; n 4 x<br />

0 ;<br />

180<br />

4 8<br />

x x<br />

8 3 24 ;<br />

mf ( x i ) 10.47208705<br />

S (10.47208705) 1.37079<br />

24<br />

(c) 0.00021 100 0.015%<br />

1.37079<br />

(4)<br />

2<br />

f 1 M 1 E 0 4<br />

s<br />

(1) 0.00021<br />

180 8<br />

x i f ( xi<br />

) m mf ( x1i<br />

)<br />

x0<br />

0 1 1 1<br />

x 1 /8 0.974495358 4 3.897981432<br />

x 2 /4 0.900316316 2 1.800632632<br />

x3<br />

3 /8 0.784213303 4 3.136853212<br />

x 4 /2 0.636619772 1 0.636619772<br />

28. (a) x b a 1 0 0.1 erf (1) 2 0.1 y<br />

10 3 3 0 4y1 2y2 4y3 4y n<br />

9 y10<br />

(b)<br />

2<br />

30<br />

E s<br />

0 0.01 0.04 0.09 0.81 1<br />

e 4e 2e 4e 4e e 0.843<br />

1 0 4 6<br />

(0.1) (12) 6.7 10<br />

180<br />

29. T x y0 2y 2 1 2y2 2y3 2yn<br />

1 y n where x b a and f is continuous on [ a, b ]. So<br />

n<br />

b a<br />

n<br />

y y y y y y y y b a f ( x ) f ( x ) f ( x ) f ( x ) f ( x ) f ( x )<br />

2 n 2 2 2<br />

T 0 1 1 2 2 n 1 n 1 n 0 1 1 2<br />

n 1 n<br />

. Since f is<br />

continuous on each interval xk<br />

1 , x k , f ( xk<br />

1) f ( xk<br />

)<br />

and is always between f ( x<br />

2<br />

k 1) and f ( x k ), there is<br />

a point c k in k 1 ,<br />

f ( xk<br />

1) f ( xk<br />

)<br />

x x k with f ( c k ) ; this is a consequence of the Intermediate Value Theorem.<br />

2<br />

n<br />

n<br />

Thus our sum is b a f ( c k ) which has the form x<br />

n<br />

k f ( c k ) with x b a<br />

k for all k. This a Riemann<br />

n<br />

k 1<br />

k 1<br />

Sum for f on [ a, b].<br />

30. S x y0 4y 3 1 2y2 4y3 2yn 2 4yn 1 y n where n is even, x b a and f is continuous on<br />

n<br />

y0 4 y1 y2 y2 4 y3 y4 y4 4 y5 y6 yn 2 4 yn 1 yn<br />

[ a, b ]. So S b a<br />

n 3 3 3 3<br />

b a<br />

n<br />

2<br />

f ( x0 ) 4 f ( x1 ) f ( x2 ) f ( x2 ) 4 f ( x3 ) f ( x4 ) f ( x4 ) 4 f ( x5) f ( x6 ) f ( xn 2 ) 4 f ( xn 1) f ( xn<br />

)<br />

6 6 6 6<br />

f ( x2k ) 4 f ( x2k 1) f ( x2k<br />

2)<br />

is the average of the six values of the continuous function on the interval<br />

6<br />

x2k<br />

, x 2k<br />

2 , so it is between the minimum and maximum of f on this interval. By the Extreme Value<br />

Theorem for continuous functions, f takes on its maximum and minimum in this interval, so there are x a and<br />

f ( x2k ) 4 f ( x2k 1) f ( x2k<br />

2)<br />

x b with x2k xa , xb x 2k<br />

2 and f ( xa<br />

) f ( x ).<br />

6<br />

b<br />

f ( x2k ) 4 f ( x2k 1) f ( x2k<br />

2 )<br />

By the Intermediate Value Theorem, there is c k in x2k<br />

, x 2k<br />

2 with f ( c k ) .<br />

6<br />

n/2<br />

So our sum has the form xk<br />

f ( c k ) with x b a<br />

k ( /2) , a Riemann sum for f on [ a, b].<br />

n<br />

k 1<br />

Copyright<br />

2014 Pearson Education, Inc.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!