29.06.2016 Views

Thomas Calculus 13th [Solutions]

  • No tags were found...

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

212 Chapter 3 Derivatives<br />

147. Given dx<br />

dy<br />

2 2 2<br />

10 m/sec and 5 m/sec, let D be the distance from the origin D x y<br />

dt<br />

dt<br />

2D dD 2x dx 2y dy D dD dx dy<br />

.<br />

dt dt dt dt<br />

x dt<br />

y dt<br />

When ( x , y ) (3, 4), 2 2<br />

D 3 ( 4) 5 and<br />

5 dD (3)(10) ( 4)(5) dD 10 2. Therefore, the particle is moving away from the origin at 2 m/sec<br />

dt<br />

dt 5<br />

(because the distance D is increasing).<br />

2<br />

148. Let D be the distance from the origin. We are given that dD 11 units/sec. Then D<br />

dt<br />

2 3<br />

x x 2D<br />

dD<br />

2<br />

2 x dx 3 x dx x (2 3 x ) dx ;<br />

2 3<br />

x 3 3 3 6<br />

dt dt dt<br />

equation gives (2)(6)(11) (3)(2 9) dx<br />

dt<br />

dx<br />

dt<br />

2 2 2 3/2 2<br />

x y x ( x )<br />

dt<br />

D and substitution in the derivative<br />

4 units/sec.<br />

149. (a) From the diagram we have 10 4 r 2 h<br />

h r 5 .<br />

2<br />

2<br />

(b) V 1 r h 1 2<br />

3 3 5 h h 3<br />

2<br />

4 h dV 4 h dh , so dV<br />

75 dt 25 dt dt<br />

5 and h 6 dh 125<br />

dt 144<br />

ft/min.<br />

150. From the sketch in the text, s r ds d dr . Also<br />

dt<br />

r dt dt<br />

r 1.2 is constant dr<br />

dt<br />

Therefore, ds 6 ft/sec and r 1.2 ft d 5 rad/sec<br />

dt<br />

dt<br />

0 ds<br />

dt<br />

r d<br />

dt<br />

(1.2) d .<br />

dt<br />

151. (a) From the sketch in the text, d 0.6 rad/sec and x tan . Also x tan dx 2<br />

sec d ; at point A,<br />

dt<br />

dt dt<br />

x 0 0 dx 2<br />

(sec 0)( 0.6) 0.6. Therefore the speed of the light is 0.6 3 km/sec when it<br />

dt<br />

5<br />

reaches point A.<br />

(3/5) rad 1 rev<br />

(b)<br />

60sec 18 revs/min<br />

sec 2 rad min<br />

152. From the figure, a b a b . We are given<br />

r BC r 2 2<br />

b r<br />

that r is constant. Differentiation gives,<br />

1 da<br />

r dt<br />

2 2<br />

b r b<br />

db<br />

( )<br />

b db<br />

dt<br />

2 2 dt<br />

b r<br />

2 2<br />

b<br />

r<br />

. Then, b 2r and<br />

db<br />

dt<br />

0.3r<br />

2 2<br />

(2 r) r ( 0.3 r) (2 r)<br />

da<br />

dt r<br />

2 2<br />

(2 r ) r<br />

2 r ( 0.3 r)<br />

(2 r )<br />

2<br />

r<br />

2<br />

2<br />

3 r ( 0.3 r)<br />

3r<br />

4 r<br />

2<br />

(0.3 r)<br />

3r<br />

2<br />

increasing when OB 2 ,<br />

2 2<br />

(3 r )( 0.3 r) (4 r )(0.3 r)<br />

0.3r<br />

2<br />

3 3r<br />

3 3<br />

r and B is moving toward O at the rate of 0.3r<br />

m/sec.<br />

r m/sec. Since da is positive, the distance OA is<br />

10 3<br />

dt<br />

153. (a) If f ( x) tan x and x<br />

4 , then f ( x)<br />

2<br />

sec x,<br />

f 1 and f 2. The linearization of<br />

4 4<br />

f ( x ) is L( x) 2 x ( 1) 2 x 2 .<br />

4<br />

2<br />

Copyright<br />

2014 Pearson Education, Inc.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!