29.06.2016 Views

Thomas Calculus 13th [Solutions]

  • No tags were found...

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Section 10.3 The Integral Test 725<br />

46. No, if<br />

n 1<br />

n<br />

a is a convergent series of positive numbers, then 2 a 2a also converges, and<br />

n<br />

n<br />

n 1 n 1<br />

2 a a . There is no largest convergent series of positive numbers.<br />

n<br />

47. (a) Both integrals can represent the area under the curve f ( x )<br />

1<br />

, and the sum s 50 can be considered an<br />

(b)<br />

x 1<br />

approximation of either integral using rectangles with x 1. The sum<br />

51<br />

1<br />

1 x 1<br />

n<br />

50<br />

50<br />

n 1<br />

1<br />

n 1<br />

s is an overestimate<br />

of the integral dx . The sum s 50 represents a left-hand sum (that is, the we are choosing the<br />

left-hand endpoint of each subinterval for c i ) and because f is a decreasing function, the value of f is<br />

a maximum at the left-hand endpoint of each subinterval. The area of each rectangle overestimates the true<br />

area, thus<br />

51<br />

50<br />

1 1<br />

1 x 1 n 1<br />

n 1<br />

dx . In a similar manner, s 50 underestimates the integral<br />

50<br />

1 dx . In<br />

0 x 1<br />

this case, the sum s 50 represents a right-hand sum and because f is a decreasing function, the value of f is<br />

a minimum at the right-hand endpoint of each subinterval. The area of each rectangle underestimates the<br />

true area, thus<br />

50<br />

n 1<br />

2 52 2 2 11.6 and<br />

1<br />

50<br />

1<br />

n 1 0 x 1<br />

dx . Evaluating the integrals we find<br />

50<br />

1<br />

50<br />

0 x 1 0<br />

51<br />

1<br />

51<br />

dx 2 x 1<br />

1 x 1 1<br />

dx 2 x 1 2 51 2 1 12.3. Thus, 11.6 12.3.<br />

n 1<br />

1<br />

n 1<br />

sn<br />

dx x n n<br />

1 x 1 1<br />

n<br />

1000 2 1 2 1 2 2 1000 500 2 1 251414.2<br />

251415.<br />

2<br />

50<br />

n 1<br />

1<br />

n 1<br />

30<br />

1<br />

n 1 n<br />

1<br />

n<br />

n 1<br />

1<br />

n<br />

n 31<br />

48. (a) Since we are using s 30 to estimate , the error is given by . We can consider this<br />

4<br />

4<br />

4<br />

sum as an estimate of the area under the curve f ( x ) when x 30 using rectangles with x 1 and<br />

4<br />

x<br />

c is the right-hand endpoint of each subinterval. Since f is a decreasing function, the value of f is a<br />

i<br />

minimum at the right-hand endpoint of each subinterval, thus dx lim dx<br />

4 4 4<br />

lim lim 1.23 10 . Thus the error<br />

b<br />

1 1 b 1<br />

n 30 x 30 x<br />

n 31<br />

b<br />

1 b<br />

1 1<br />

5<br />

5<br />

1.23 10 .<br />

3 3 3<br />

3x<br />

30 b 3b<br />

3(30)<br />

1 1 b<br />

1 1 b<br />

n x n x b n x b 3x<br />

n<br />

(b) We want S sn<br />

0.000001 dx 0.000001 dx lim dx lim<br />

4 4 4 3<br />

1 1 1 n 3 1000000<br />

3 3 3<br />

3b 3n 3n<br />

3<br />

lim 0.000001 69.336 n 70.<br />

b<br />

1 1 b<br />

1 1 b<br />

1 1<br />

n x n x b n x b 2x n b 2b 2n<br />

8<br />

1 0.01 n 50 7.071 n 8 S s 1<br />

2 3<br />

8 1.195<br />

2n<br />

n<br />

n 1<br />

49. We want S sn<br />

0.01 dx 0.01 dx lim dx lim lim<br />

3 3 3 2 2 2<br />

1<br />

Copyright<br />

2014 Pearson Education, Inc.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!