29.06.2016 Views

Thomas Calculus 13th [Solutions]

  • No tags were found...

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Section 5.6 Substitution and Area Between Curves 405<br />

2<br />

107. Area between parabola and<br />

a y a : A 2<br />

2 2<br />

0 ( a x ) dx 2 2 3<br />

a<br />

3<br />

a x 1 x 3 4<br />

3<br />

3 2 a a<br />

0<br />

3 0 a<br />

3<br />

;<br />

2 3<br />

Area of triangle AOC: 1 (2 )( ) ;<br />

2 a a a limit of ratio 3<br />

lim a 3 which is independent of a.<br />

4<br />

3 4<br />

a 0 a<br />

b<br />

b<br />

108. A 2 f ( x)<br />

dx ( ) 2<br />

a<br />

a f x dx b<br />

a f ( x)<br />

dx b<br />

a f ( x)<br />

dx b<br />

a f ( x) dx 4<br />

109. Neither one; they are both zero. Neither integral takes into account the changes in the formulas for the regions<br />

upper and lower bounding curves at x 0. The area of the shaded region is actually<br />

0 1 0 1<br />

A x ( x) dx x ( x) dx 2x dx 2x dx 2.<br />

1 0 1 0<br />

110. It is sometimes true. It is true if f ( x) g( x ) for all x between a and b. Otherwise it is false. If the graph of f lies<br />

below the graph of g for a portion of the interval of integration, the integral over that portion will be negative<br />

and the integral over [ a, b ] will be less than the area between the curves (see Exercise 71).<br />

111. Let u 2x du 2 dx 1 du dx; x 1 u 2, x 3 u 6<br />

2<br />

3 sin 2 x 6<br />

dx sin u 1<br />

6<br />

sin<br />

6<br />

du u du [ F( u)] 1 x 2 2 2<br />

2 F(6) F(2)<br />

u<br />

u<br />

2<br />

112. Let u 1 x du dx du dx; x 0 u 1, x 1 u 0<br />

1<br />

0 0 1 1<br />

f (1 x)<br />

dx f ( u)( du) f ( u) du f ( u) du f ( x)<br />

dx<br />

0<br />

1 1 0 0<br />

3<br />

113. (a) Let u x du dx ; x 1 u 1, x 0 u 0<br />

f odd f ( x) f ( x ). Then<br />

0<br />

1 f ( x)<br />

dx 0<br />

f ( u)( du)<br />

1<br />

1<br />

f ( u) du 3<br />

0<br />

(b) Let u x du dx ; x 1 u 1, x 0 u 0<br />

0<br />

f even f ( x) f ( x ). Then<br />

1 f ( x)<br />

dx 0<br />

f ( u)( du)<br />

1<br />

0<br />

1<br />

f ( u) ( du)<br />

0<br />

f ( u)<br />

du<br />

1<br />

0<br />

f ( u)<br />

du<br />

1<br />

1<br />

f ( u) du 3<br />

0<br />

0<br />

114. (a) Consider f ( x)<br />

dx when f is odd. Let u x du dx du dx and x a u a and<br />

a<br />

0<br />

x 0 u 0. Thus ( )<br />

a f x dx 0<br />

0<br />

f ( u)<br />

du ( )<br />

a<br />

a f u du a a f ( u ) du f ( x ) dx . Thus<br />

0<br />

0<br />

( )<br />

aa f x dx 0<br />

( )<br />

a f x dx a a a f ( x ) dx f ( x ) dx f ( x ) dx 0.<br />

0<br />

0<br />

0<br />

(b)<br />

/2 /2<br />

sin<br />

/2 x dx [ cos x ] /2 cos cos 0 0 0.<br />

2 2<br />

115. Let u a x du dx ; x 0 u a, x a u 0<br />

a f ( x)<br />

dx 0 f ( a u)<br />

I<br />

0 f ( x) f ( a x)<br />

( ) ( ) ( du<br />

a f a u f u<br />

) a f ( a u)<br />

du a f ( a x)<br />

dx<br />

0 f ( u) f ( a u)<br />

0 f ( x) f ( a x)<br />

a f ( x) dx a f ( a x)<br />

dx a f ( x) f ( a x)<br />

a a<br />

I I<br />

dx dx [ x] 0 f ( x) f ( a x) 0 f ( x) f ( a x)<br />

0 ( ) ( ) 0<br />

0 a 0 a.<br />

f x f a x<br />

Therefore, 2 I a I a .<br />

2<br />

Copyright<br />

2014 Pearson Education, Inc.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!