29.06.2016 Views

Thomas Calculus 13th [Solutions]

  • No tags were found...

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Section 4.8 Antiderivatives 315<br />

2 2<br />

y 1 and t 0 we have 1 cos (0) sin (0) 3(0) C3 C3<br />

0 y cos t sin t 3t<br />

3<br />

3<br />

y sin t cos t t C 4;<br />

at y 0 and t 0 we have 0 sin (0) cos (0) 0 C 4<br />

3<br />

C4 1 y sin t cos t t 1<br />

(4)<br />

112. y cos x 8sin(2 x) y sin x 4cos (2 x) C 1;<br />

at y 0 and x 0 we have<br />

0 sin(0) 4cos(2(0)) C1 C1 4 y sin x 4cos(2 x) 4 y cos x 2sin(2 x) 4 x C 2;<br />

at<br />

y 1 and x 0 we have 1 cos(0) 2sin(2(0)) 4(0) C2 C2<br />

0 y cos x 2sin(2 x) 4x<br />

2<br />

2<br />

y sin x cos(2 x) 2 x C 3;<br />

at y 1 and x 0 we have 1 sin(0) cos(2(0)) 2(0) C3 C3<br />

0<br />

2 1 2 3<br />

y sin x cos(2 x) 2x y cos x sin(2 x) x C<br />

2 3 4;<br />

at y 3 and x 0 we have<br />

1 2 3 1 2 3<br />

3 cos(0) sin(2(0)) (0) C<br />

2 3 4 C4<br />

4 y cos x sin(2 x) x 4<br />

2 3<br />

113. m y 3 x<br />

1/2 3/2<br />

3x y 2 x C;<br />

at (9, 4) we have<br />

3/2<br />

4 2(9) C C<br />

3/2<br />

50 y 2x<br />

50<br />

114. (a)<br />

2<br />

d y<br />

dx<br />

2<br />

dy 2<br />

2<br />

6x 3 x C 1;<br />

at y 0 and x = 0 we have 0 3(0) C<br />

dx<br />

1 C1<br />

0<br />

y x 3<br />

C 2 ; at y = 1 and x = 0 we have 3<br />

C2 1 y x 1<br />

(b) One, because any other possible function would differ from<br />

of the initial conditions<br />

dy<br />

dx<br />

2<br />

3x<br />

3<br />

x 1 by a constant that must be zero because<br />

115.<br />

dy<br />

dx<br />

4 1/3 4 1/3 4/3<br />

1 x y 1 x dx x x C ; at (1, 0.5) on the curve we have<br />

3 3<br />

4/3 4/3<br />

0.5 1 1 C C 0.5 x x 1<br />

2<br />

116.<br />

dy<br />

dx<br />

2<br />

x 1 y ( x 1) dx x x C ; at ( 1, 1) on the curve we have<br />

2<br />

2 2<br />

( 1)<br />

1 ( 1) C C 1 y x x 1<br />

2 2 2 2<br />

dy<br />

117. sin x cos x y (sin x cos x) dx cos x sin x C ; at ( , 1) on the curve we have<br />

dx<br />

1 = cos( ) sin( ) + C C = 2 y = cos x sin x 2<br />

118.<br />

dy<br />

dx<br />

we have<br />

1 1 1/2 1 1/2 1/2<br />

sin x x sin x y x sin x dx x cos x C ; at (1, 2) on the curve<br />

2 x<br />

2 2<br />

1/2<br />

2 1 cos (1) C C 0 y x cos x<br />

119. (a)<br />

ds<br />

2<br />

2<br />

9.8t 3 s 4.9t 3 t C ; (i) at s = 5 and t = 0 we have C = 5 s 4.9t 3t<br />

5;<br />

dt<br />

displacement = s(3) s(1) = ((4.9)(9) 9 + 5) (4.9 3 + 5) = 33.2 units; (ii) at s = 2 and t = 0 we have<br />

2<br />

C = 2 s 4.9t 3t 2; displacement = s(3) s(1) = ((4.9)(9) 9 2) (4.9 3 2) = 33.2 units;<br />

2<br />

(iii) at s s 0 and t = 0 we have C s0 s 4.9t 3 t s0;<br />

displacement s(3) s(1) ((4.9)(9) 9 s0 ) (4.9 3 s0<br />

) 33.2 units<br />

(b) True. Given an antiderivative f(t) of the velocity function, we know that the bodys position function is<br />

s = f(t) + C for some constant C. Therefore, the displacement from t = a to t = b is<br />

(f(b) + C) (f(a) + C) = f(b) f(a). Thus we can find the displacement from any antiderivative f as the<br />

numerical difference f(b) f(a) without knowing the exact values of C and s.<br />

Copyright<br />

2014 Pearson Education, Inc.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!