29.06.2016 Views

Thomas Calculus 13th [Solutions]

  • No tags were found...

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

1076 Chapter 14 Partial Derivatives<br />

(b) z, x are independent with<br />

2 yz<br />

w x e and<br />

yz 2 yz y 2 yz<br />

2 xe (0) zx e yx e (1);<br />

z<br />

w 2 yz 1 2 yz 2 yz<br />

zx e yx e x e y z<br />

z x<br />

2y 2 y<br />

(c) z, y are independent with<br />

2 yz<br />

w x e and<br />

yz 2 yz 2 yz<br />

2 xe x zx e (0) yx e (1);<br />

z<br />

w<br />

z<br />

y<br />

yz 1 2 yz 2 yz<br />

2xe yx e 1 x y e<br />

2x<br />

2 2 w w x w y<br />

z x y<br />

w z<br />

z x z y z z z<br />

2 2 y y<br />

z x y 1 0 2 y 1 ; therefore,<br />

z z 2 y<br />

2 2 w w x w y<br />

z x y<br />

w z<br />

z x z y z z z<br />

2 2<br />

z x y 1 2x x 0 x 1 ; therefore,<br />

z z 2x<br />

102. (a) T, P are independent with U f ( P, V , T ) and PV nRT U U P U V U T<br />

T P T V T T T<br />

U (0) U V U (1); PV nRT P V nR V nR ; therefore,<br />

P V T T T T P<br />

U U nR U<br />

T P V P T<br />

T<br />

(b) V, T are independent with U f ( P, V , T ) and PV nRT U U P U V U<br />

V P V V V T V<br />

U P U (1) U (0); PV nRT V P P ( nR ) T 0 P P ; therefore,<br />

P V V T V V V V<br />

U U P U<br />

V T P V V<br />

CHAPTER 14 ADDITIONAL AND ADVANCED EXERCISES<br />

(0, ) (0, 0)<br />

1. By definition, f f<br />

(0, 0) lim x h f<br />

xy<br />

x<br />

h 0<br />

h<br />

so we need to calculate the first partial derivatives in the<br />

numerator. For ( x, y ) (0, 0) we calculate fx<br />

( x, y ) by applying the differentiation rules to the formula for<br />

2 2 2 2<br />

2 3 x y x x y x 2 3 2 3 3<br />

f (2 ) (2 ) 4<br />

( x , y ): f x y y x y y x y<br />

( , ) ( ) (0, ) h<br />

x x y xy .<br />

2 2<br />

2 2<br />

2 2 2<br />

2 2<br />

2 x f h h For<br />

2<br />

x y x y x y x y<br />

h<br />

( x, y ) (0, 0) we apply the definition:<br />

f (0, 0) lim h 0<br />

xy<br />

1.<br />

h 0<br />

h<br />

Similarly,<br />

3 2 3 2 3<br />

f ( h, 0) f (0,0)<br />

f (0, 0) lim lim 0 0<br />

x 0. Then by definition<br />

h 0<br />

h<br />

h 0<br />

h<br />

f f y ( h, 0) f y (0,0)<br />

yx (0, 0) lim ,<br />

h 0<br />

h<br />

so for ( x , y ) (0, 0) we have<br />

x xy 4x y<br />

f ( , ) ( , 0) h<br />

y x y f ;<br />

2 2 2 y h h for ( x, y ) (0, 0) we obtain<br />

2<br />

x y 2 2<br />

x y<br />

h<br />

(0, ) (0, 0)<br />

f y (0, 0) lim f h f<br />

h 0<br />

h<br />

lim 0 0 0. Then by definition 0<br />

h 0<br />

h<br />

f (0, 0) lim h<br />

yx<br />

1.<br />

h 0<br />

h<br />

Note that fxy<br />

(0, 0) f yx (0, 0) in this case.<br />

2. w x x x x<br />

1 e cos y w x e cos y g( y); w e sin y g ( y) 2y e sin y g ( y) 2y<br />

x<br />

y<br />

2<br />

g( y) y C; w ln 2 when x ln 2 and<br />

C 2. Thus,<br />

x<br />

x 2<br />

w x e cos y g( y) x e cos y y 2.<br />

ln 2 2<br />

y 0 ln 2 ln 2 e cos 0 0 C 0 2 C<br />

Copyright<br />

2014 Pearson Education, Inc.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!