29.06.2016 Views

Thomas Calculus 13th [Solutions]

  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

1178 Chapter 16 Integrals and Vector Fields<br />

yC g f<br />

0 ( , ) ( )<br />

zC<br />

( )<br />

zC<br />

y<br />

g y z h z z<br />

h z<br />

x y z x y z x y z<br />

2 2 2<br />

3/2<br />

2 2 2<br />

3/2<br />

2 2 2<br />

3/2<br />

C<br />

GmM<br />

1 1 1<br />

x y z x y z<br />

h( z) C f ( x, y, z) C . Let C 0 f ( x, y, z )<br />

is a potential<br />

function for F.<br />

(b) If s is the distance of ( x, y, z ) from the origin, then<br />

gravitational field F is work<br />

2 2 2<br />

1/2<br />

2 2 2<br />

1/2<br />

2 2<br />

s x y z 2 . The work done by the<br />

P<br />

2<br />

P2<br />

d GmM GmM GmM GmM<br />

P 2 2 2<br />

1<br />

x y z<br />

s2 s1 s2 s1<br />

P1<br />

1 1 ,<br />

F r as claimed.<br />

16.4 GREENS THEOREM IN THE PLANE<br />

M M N<br />

y y x<br />

1. M y a sin t , N x a cos t , dx a sin t dt , dy a cos t dt 0, 1, 1, and 0;<br />

Equation (3):<br />

R<br />

Equation (4):<br />

R<br />

2 2<br />

M dy N dx a t a t a t a t dt dt<br />

C 0 0<br />

( sin )( cos ) ( cos )( sin ) 0 0;<br />

M N dx dy 0 dx dy 0, Flux<br />

x y<br />

R<br />

2 2 2 2<br />

M dx N dy a t a t a t a t dt a dt a<br />

C 0 0<br />

2 2<br />

a<br />

2 2 2 2<br />

2<br />

N M<br />

a a x a<br />

1<br />

dx dy 2 dy dx 4 a x dx 4<br />

x a x a<br />

sin<br />

x<br />

x y a c a<br />

2 a 2<br />

a<br />

2 2<br />

2 2<br />

2a 2 a , Circulation<br />

( sin )( sin ) ( cos )( cos ) 2 ;<br />

M M N N<br />

x y x y<br />

2. M y a sin t, N 0, dx a sin t dt, dy a cos t dt 0, 1, 0, and 0;<br />

Equation (3):<br />

Equation (4):<br />

R<br />

M dy<br />

C<br />

N dx<br />

2 2 2 2<br />

2<br />

a 1<br />

0 t cos t dt a<br />

2<br />

t 0; 0 dx dy<br />

0<br />

R<br />

0, Flux<br />

M dx<br />

C<br />

N dy<br />

2 2 2 2 sin 2<br />

2<br />

2<br />

a<br />

0 t dt a t t a<br />

2 4<br />

0<br />

2 a<br />

2 2<br />

2<br />

N M dx dy 1 dx dy r dr d a d a<br />

x y<br />

0 0 0 2<br />

, Circulation<br />

R<br />

3. M 2x 2a cos t, N 3y 3a sin t, dx a sin t dt, dy a cos t dt M 2, M 0, N 0, and<br />

x y x<br />

N<br />

y<br />

3;<br />

2<br />

Equation (3): M dy N dx (2a cos t)( a cos t) (3a sin t)( a sin t)<br />

dt<br />

C 0<br />

2 sin 2<br />

2<br />

sin 2<br />

2<br />

2 2 2 2 2 2 2 2 2<br />

0 2 cos 3 sin 2 t<br />

2 4 3 t<br />

a t a t dt a t<br />

a t<br />

0<br />

2 4<br />

2 a 3 a a ;<br />

0<br />

2 a<br />

2 2<br />

2<br />

M N 1 dx dy r dr d a d a<br />

x y<br />

0 0 0 2<br />

, Flux<br />

R<br />

R<br />

2<br />

Equation (4): M dx N dy (2a cos t)( a sin t) ( 3a sin t)( a cos t)<br />

dt<br />

C 0<br />

2 2 2 2 2<br />

2<br />

1<br />

0 2 a sin t cos t 3 a sin t cos t dt 5 a<br />

2<br />

sin t 0; 0 dx dy 0, Circulation<br />

0<br />

R<br />

N<br />

y<br />

Copyright<br />

2014 Pearson Education, Inc.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!