29.06.2016 Views

Thomas Calculus 13th [Solutions]

  • No tags were found...

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Chapter 9 Additional and Advanced Exercises 699<br />

3. (a) Let y be any function such that v( x) y v( x) Q( x) dx C,<br />

d ( ) ( ) ( ) ( ) ( ).<br />

dx v x y v x y y v x v x Q x We have P( x)<br />

dx<br />

v( x)<br />

e<br />

P( x)<br />

dx<br />

v( x) e . Then<br />

v ( x) P( x)<br />

dx<br />

e P( x) v( x) P( x ). Thus v( x) y y v( x) P( x) v( x) Q( x) y yP( x) Q( x ) the<br />

given y is a solution.<br />

(b) If v and Q are continuous on [ a, b ] and x ( a, b ), then d<br />

x<br />

( ) ( )<br />

dx x v t Q t dt v ( ) ( )<br />

x<br />

( ) ( ) ( ) ( ) .<br />

x v t Q t dt v x Q x dx So C y0v x0 v( x) Q( x) dx . From part (a),<br />

0<br />

v( x) y v( x) Q( x) dx C . Substituting for C: v( x) y v( x) Q( x) dx y0v( x0<br />

) v( x) Q( x)<br />

dx<br />

v( x)<br />

y y0v x 0 when x x 0 .<br />

0<br />

4. (a) y P( x) y 0, y( x 0 ) 0. Use<br />

P( x)<br />

dx<br />

v( x)<br />

y C y Ce and<br />

P( x)<br />

dx<br />

v ( x)<br />

e as an integrating factor. Then d ( ) 0<br />

dx<br />

v x y<br />

P( x)<br />

dx<br />

y1 C1 e ,<br />

P( x)<br />

dx<br />

y2 C2 e , y1 x0 y2 x0 0,<br />

P( x) dx P( x)<br />

dx<br />

y1 y2 C1 C2 e C3e and y1 y 2 0 0 0. So y1 y 2 is a solution to<br />

y P( x) y 0 with y x0 0.<br />

(b)<br />

(c)<br />

d P( x) dx P( x)<br />

dx<br />

v( x) y1 ( x) y2( x) d e e C d d<br />

1 C2 C1 C2 C3<br />

0.<br />

dx dx dx dx<br />

d<br />

dx<br />

v( x) y1 ( x) y2( x) dx v( x) y1 ( x) y2<br />

( x) 0 dx C<br />

P( x)<br />

dx<br />

P( x)<br />

dx<br />

y1 C1 e , y2 C2 e , y y 1 y 2 . So P( x) dx P( x)<br />

dx<br />

y x0 0 C1e C2e<br />

0<br />

C1 C2 0 C1 C2 y1 ( x) y2<br />

( x ) for a x b.<br />

5.<br />

2 2<br />

2 2 dy<br />

0 x y<br />

y 1 y y<br />

x y dx x ydy x F F( v) 1 v dx dv 0<br />

dx xy y x y/ x x x v x v F ( v)<br />

2<br />

dx dv 0 dx vdv<br />

ln 1 2<br />

4<br />

ln 2 1 4ln ln 2 y<br />

C x v C x 1 C<br />

x 1<br />

2<br />

v v<br />

x 2v<br />

1<br />

x<br />

v<br />

2 2<br />

4 2 y x 2 2 2 2 2 2 C 2 2 2<br />

ln x ln C ln x 2y x C x 2y x e x 2y x C<br />

2<br />

x<br />

6.<br />

2<br />

x 2<br />

2 dy y 2 x y dx dy 2<br />

0 y x y dy y y y<br />

( ) dx dv 0<br />

dx 2 dx x x F x F v v v x<br />

2<br />

x v v v<br />

dx dv C ln x 1 C ln x 1 C ln x x C<br />

x 2<br />

v<br />

v y/<br />

x y<br />

7.<br />

y/<br />

x<br />

y/ x dy xe y y/<br />

x y y<br />

v<br />

xe y dx xdy 0 e F F( v) e v dx dv 0<br />

dx x x x x v<br />

v e v<br />

dx<br />

x<br />

dv<br />

v<br />

e<br />

v<br />

y/<br />

x<br />

C ln x e C ln x e C<br />

Copyright<br />

2014 Pearson Education, Inc.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!