29.06.2016 Views

Thomas Calculus 13th [Solutions]

  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

752 Chapter 10 Infinite Sequences and Series<br />

10.7 POWER SERIES<br />

1.<br />

u<br />

n 1<br />

n 1<br />

lim 1 lim x 1 | | 1 1 1;<br />

u<br />

n<br />

n<br />

n<br />

n<br />

x<br />

x x when x 1 we have<br />

n<br />

n<br />

( 1) ,<br />

1<br />

a divergent series;<br />

when x 1 we have 1, a divergent series<br />

n 1<br />

(a) the radius is 1; the interval of convergence is 1 x 1<br />

(b) the interval of absolute convergence is 1 x 1<br />

(c) there are no values for which the series converges conditionally<br />

2.<br />

n 1<br />

un<br />

1 ( x 5)<br />

lim 1 lim 1 | x 5 | 1 6 x 4; when x 6 we have<br />

u<br />

n<br />

n n n ( x 5)<br />

n<br />

n<br />

( 1) ,<br />

1<br />

a divergent<br />

series; when x 4 we have 1, a divergent series<br />

n 1<br />

(a) the radius is 1; the interval of convergence is 6 x 4<br />

(b) the interval of absolute convergence is 6 x 4<br />

(c) there are no values for which the series converges conditionally<br />

3.<br />

n 1<br />

lim un<br />

1 1 lim (4x<br />

1) 1 | 4 x 1| 1 1 4 x 1 1 1 x<br />

u<br />

(4 1)<br />

2<br />

0; when x 1 we have<br />

n<br />

n n n x<br />

2<br />

n n<br />

( 1) ( 1)<br />

2n ( 1)<br />

n<br />

1 , a divergent series; when x 0 we have<br />

n 1 n 1 n 1<br />

a divergent series<br />

(a) the radius is 1 4 ; the interval of convergence is 1<br />

2<br />

x 0<br />

(b) the interval of absolute convergence is 1<br />

2<br />

x 0<br />

(c) there are no values for which the series converges conditionally<br />

n<br />

n n n<br />

( 1) (1) ( 1) ,<br />

1 n 1<br />

4.<br />

n 1<br />

lim un<br />

1 1 lim (3x 2) n<br />

1 1 3 x 2 lim n<br />

(3 2)<br />

1<br />

1 3 x 2 1 1 3 x<br />

u 2 1<br />

n<br />

n n n<br />

n x<br />

n<br />

n<br />

1<br />

3<br />

x 1; when x 1 we have<br />

3<br />

n<br />

n<br />

( 1)<br />

n<br />

1<br />

which is the alternating harmonic series and is conditionally<br />

convergent; when x 1 we have 1,<br />

the divergent harmonic series<br />

n<br />

n 1<br />

(a) the radius is 1 3 ; the interval of convergence is 1 3<br />

x 1<br />

(b) the interval of absolute convergence is 1 3<br />

x 1<br />

(c) the series converges conditionally at x 1<br />

3<br />

5.<br />

lim 1<br />

u 1<br />

1 lim ( 2) n n<br />

n<br />

x 10 1 x 2<br />

u<br />

1<br />

10<br />

1 2 10 10 2 10 8 12;<br />

n<br />

n<br />

n<br />

n<br />

n<br />

10 ( x 2)<br />

x x x when<br />

n<br />

x 8 we have ( 1) , a divergent series; when x 12 we have<br />

n 1<br />

(a) the radius is 10; the interval of convergence is 8 x 12<br />

(b) the interval of absolute convergence is 8 x 12<br />

(c) there are no values for which the series converges conditionally<br />

n<br />

1,<br />

1<br />

a divergent series<br />

Copyright<br />

2014 Pearson Education, Inc.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!