29.06.2016 Views

Thomas Calculus 13th [Solutions]

  • No tags were found...

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

998 Chapter 14 Partial Derivatives<br />

83. w cos ( x ct) 2sin (2x 2 ct),<br />

w c cos ( x ct) 2c sin (2 x ct);<br />

w sin ( x ct) 4cos (2x 2 ct),<br />

x<br />

t<br />

2<br />

x<br />

2 w 2 2<br />

2<br />

2 2<br />

2<br />

c sin ( x ct) 4c cos (2x 2 ct) w c sin ( x ct) 4cos (2x 2 ct)<br />

c w<br />

2 2 2<br />

t t x<br />

2<br />

84. w 1 ,<br />

x x ct<br />

w<br />

t<br />

c ;<br />

x ct<br />

2<br />

w<br />

x<br />

1 ,<br />

( x ct)<br />

2 2<br />

2 2 2 2<br />

w c w 2 2<br />

c 1 c w<br />

2 2 2 2 2<br />

t ( x ct) t ( x ct)<br />

x<br />

85.<br />

w 2<br />

2sec (2x<br />

2 ct),<br />

w<br />

2<br />

2csec (2x 2 ct);<br />

w 2<br />

8sec (2x 2 ct) tan (2x 2 ct),<br />

x<br />

t<br />

2<br />

x<br />

2 w 2 2<br />

2<br />

2 2 2<br />

2<br />

8c sec (2x 2 ct) tan (2x 2 ct) ux w c 8sec (2x 2 ct) tan (2x 2 ct)<br />

c w<br />

2 2 2<br />

t t x<br />

2<br />

86. w<br />

x ct<br />

15sin (3x 3 ct) e , w<br />

x ct<br />

15c sin (3x 3 ct) ce ; w<br />

x ct<br />

45cos (3x 3 ct) e ,<br />

x<br />

t<br />

2<br />

x<br />

2 2 2<br />

w 2 2 x ct<br />

2 x ct 2<br />

45c cos (3x 3 ct) c e w c 45cos (3x 3 ct)<br />

e c w<br />

2 2 2<br />

t t x<br />

2<br />

87.<br />

2<br />

2 2<br />

f f f 2 2 f<br />

ac ac ac a c<br />

2 2 2<br />

w u ( ) w ( ) ( ) ;<br />

t u t u t u u<br />

2 2 2 2<br />

2<br />

2 f 2 2 f 2 2 f 2<br />

a w a c c a c w<br />

2 2 2 2 2<br />

u t u u x<br />

2<br />

2<br />

f f f<br />

2 2<br />

w u a w a a<br />

x u x u x u<br />

88. If the first partial derivatives are continuous throughout an open region R, then by Theorem 3 in this section of<br />

the text, f ( x, y) f ( x0, y0) fx<br />

( x0, y0) x f y ( x0 , y0 ) y 1 x 2 y , where 1 , 2 0 as x, y 0.<br />

Then as ( x, y) ( x0 , y0), x 0 and<br />

every point ( x0 , y 0)<br />

in R.<br />

y 0 lim f ( x, y) f ( x0 , y0<br />

) f is continuous at<br />

( x, y) ( x , y )<br />

89. Yes, since fxx, f yy , fxy , and f yx are all continuous on R, use the same reasoning as in Exercise 88 with<br />

fx ( x, y) fx ( x0 , y0) fxx ( x0 , y0) x fxy<br />

( x0 , y0)<br />

y 1 x 2 y and<br />

f y ( x, y) f y ( x0, y0) f yx ( x0, y0 ) x f yy ( x0, y0 ) y 1 x 2<br />

y . Then<br />

lim fx<br />

( x, y) fx<br />

( x0 , y 0)<br />

and lim f y ( x, y) f y ( x0, y0).<br />

( x, y) ( x , y )<br />

( x, y) ( x , y )<br />

0 0<br />

0 0<br />

0 0<br />

90. To find and so that ut uxx ut<br />

sin( x)<br />

e<br />

t<br />

and ux<br />

cos( x)<br />

e<br />

t<br />

uxx<br />

2 sin( x ) e<br />

t ; then ut<br />

uxx<br />

sin( x) e<br />

t 2<br />

sin( x) e<br />

t<br />

, thus ut u xx only if<br />

2<br />

91.<br />

h 0<br />

2<br />

h<br />

2<br />

0<br />

4<br />

0<br />

f (0 h, 0) f (0, 0)<br />

f (0, 0) lim lim lim 0<br />

x 0;<br />

h 0<br />

h<br />

h 0<br />

h<br />

h 0<br />

h<br />

0 h<br />

2<br />

0<br />

2<br />

h<br />

4<br />

f (0, 0 h) f (0, 0)<br />

f y (0, 0) lim lim<br />

h 0<br />

h<br />

h 0<br />

h<br />

2 2<br />

ky y 4<br />

ky k k<br />

2<br />

2<br />

4<br />

2 4 4 2 2<br />

lim 0 0; lim f ( x, y ) lim lim lim<br />

h 0<br />

h<br />

( x, y) (0, 0) y 0 ky y y 0 k y y y 0 k 1 k 1<br />

different limits for<br />

2<br />

along x ky<br />

different values of k lim f ( x, y ) does not exist f ( x, y ) is not continuous at (0, 0) by Theorem<br />

( x, y) (0, 0)<br />

4, f ( x, y ) is not differentiable at (0, 0).<br />

0<br />

Copyright<br />

2014 Pearson Education, Inc.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!