29.06.2016 Views

Thomas Calculus 13th [Solutions]

  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Section 16.4 Greens Theorem in the Plane 1183<br />

b<br />

34. f ( x)<br />

dx Area of R y dx , from Exercise 33<br />

a C<br />

x ( x, y)<br />

dA x dA x dA<br />

M y R R R<br />

35. Let ( x, y) 1 x Ax x dA ( x 0) dx dy<br />

M ( x, y)<br />

dA dA A<br />

R<br />

R<br />

R R<br />

2<br />

x dy, Ax x dA (0 x) dx dy xy dx , and Ax x dA 2 x 1 x dx dy<br />

C 2<br />

C<br />

3 3<br />

R R<br />

R R<br />

1 2 1 1 2 1 2<br />

C 3 x dy 3 xy dx 2 C x dy C xy dx 3 C<br />

x dy xy dx Ax<br />

2 2 2 3<br />

36. If ( x, y ) 1 then I ( , ) 0 1<br />

y x x y dA x dA x dy dx x dy,<br />

3 C<br />

R R R<br />

2 2 2<br />

2 2 2<br />

x dA 0 x dy dx x y dx , and x dA 3 x 1 x dy dx<br />

C<br />

4 4<br />

R R<br />

R R<br />

1 3 1 2 1 3 2 1 3 2 1 3 2<br />

x dy x y dx x dy x y dx x dy x y dx x dy x y dx I<br />

C 4 4 4 C 3 C C 4 C<br />

y<br />

37.<br />

38.<br />

2 2 2 2<br />

f f f f f f f f<br />

M , N M , N<br />

dx dy dx dy 0 for such curves C<br />

y x y 2 x 2<br />

C y x<br />

2 2<br />

y x x y<br />

R<br />

M 1 2 1 3 1 2 2<br />

4 x y , M<br />

, N 1<br />

3 y N x y 4<br />

x y x<br />

Curl N M 1 2 2<br />

1 x y 0 in the interior of<br />

x y 4<br />

2 2<br />

the ellipse 1<br />

2 2<br />

x y 1 work F dr 1 1 x y dx dy will be maximized on the region<br />

4<br />

C<br />

4<br />

R<br />

2 2<br />

R {( x, y)|curl F } 0 or over the region enclosed by 1 1 x y<br />

4<br />

39. (a) 2 2 y<br />

2 2 y<br />

f x i j M x , N ; since M, N are discontinuous at (0, 0), we<br />

2 2 2 2 2 2 2 2<br />

x y x y x y x y<br />

compute<br />

C f n ds directly since Greens Theorem does not apply. Let x a cos t , y a sin t<br />

dx a sin t dt,<br />

dy a cos t dt , M 2 cos , 2 sin , 0 2 ,<br />

a<br />

t N a<br />

t t so f n ds M dy N dx<br />

C<br />

C<br />

2x<br />

2 2<br />

2 2 2<br />

cos t ( a cos t) sin t ( a sin t) dt 2 cos t sin t dt 4 . Note that this holds for<br />

0 a<br />

a<br />

0<br />

any a 0, so 4<br />

C f n ds for any circle C centered at (0, 0) traversed counterclockwise and<br />

4<br />

C f n ds if C is traversed clockwise.<br />

(b) If K does not enclose the point (0, 0) we may apply Greens Theorem: f n ds M dy N dx<br />

C<br />

C<br />

2 2 2 2<br />

2 y x 2 x y<br />

M N dx dy dx dy 0 dx dy 0. If K does enclose the point (0, 0)<br />

x y<br />

2 2<br />

2<br />

2 2<br />

2<br />

R R x y x y<br />

R<br />

we proceed as follows:<br />

Choose a small enough so that the circle C centered at (0, 0) of radius a lies entirely within K. Greens<br />

Theorem applies to the region R that lies between K and C. Thus, as before, 0 M N dx dy<br />

x y<br />

R<br />

M dy N dx M dy N dx where K is traversed counterclockwise and C is traversed clockwise.<br />

K<br />

C<br />

Copyright<br />

2014 Pearson Education, Inc.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!