29.06.2016 Views

Thomas Calculus 13th [Solutions]

  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Section 14.7 Extreme Values and Saddle Points 1033<br />

parallel to i 2j k which is normal to the plane if x 1 and y 1. Thus the point 1 , 1, 1 1 10 or<br />

2<br />

2 4<br />

1 , 1, 45 is the point on the surface<br />

2 4<br />

2 2<br />

z x y 10 nearest the plane x 2y z 0.<br />

51.<br />

2 2 2<br />

d( x, y, z) ( x 0) ( y 0) ( z 0) we can minimize d( x, y, z ) by minimizing<br />

2 2 2<br />

D( x, y, z) x y z ;<br />

2 2 2<br />

3x 2y z 6 z 6 3x 2 y D( x, y) x y 6 3x 2y<br />

Dx ( x , y ) 2 x 6(6 3 x 2 y ) 0 and Dy<br />

( x, y) 2y 4(6 3x 2 y ) 0 critical point is<br />

9 6 3<br />

2<br />

, z ; D 9 6 9 6 9 6<br />

7 7 7 xx , 20, D<br />

7 7 yy , 10, D , 12 56 0<br />

7 7 xy D<br />

7 7<br />

xx Dyy D xy and D xx 0<br />

local minimum of d<br />

9 6 3 3 14<br />

, ,<br />

7 7 7 7<br />

52.<br />

2 2 2<br />

d( x, y, z) ( x 2) ( y 1) ( z 1) we can minimize d( x, y, z ) by minimizing<br />

2 2 2<br />

D( x, y, z) ( x 2) ( y 1) ( z 1) ; x y z 2 z x y 2<br />

2 2 2<br />

D( x, y) ( x 2) ( y 1) ( x y 3) Dx<br />

( x, y) 2( x 2) 2( x y 3) 0 and<br />

Dy ( x, y) 2( y 1) 2( x y 3) 0 critical point is 8 , 1 z 1 ; D 8 1 8 1<br />

3 3 3 xx , 4, D , 4<br />

3 3 yy<br />

,<br />

3 3<br />

8 1<br />

2<br />

Dxy , 2 D 12 0<br />

3 3<br />

xxDyy D xy and D xx 0 local minimum of d 8 , 1 , 1 2<br />

3 3 3 3<br />

53.<br />

2 2 2<br />

s( x, y, z) x y z ;<br />

2 2 2<br />

x y z 9 z 9 x y s( x, y) x y (9 x y)<br />

sy<br />

x y y x y critical point is (3, 3) z 3;<br />

2<br />

s xx local minimum of<br />

sx ( x , y ) 2 x 2(9 x y ) 0 and ( , ) 2 2(9 ) 0<br />

sxx (3, 3) 4, syy (3, 3) 4, sxy (3, 3) 2 sxxsyy s xy 12 0 and 0<br />

s(3, 3, 3) 27<br />

54. p( x, y, z) xyz;<br />

2<br />

px ( x , y ) 3 y 2 xy y 0 and<br />

and (1,1); for (0, 0) z 3;<br />

point; for (0, 3) z 0;<br />

point; for (3, 0) z 0;<br />

point; for (1, 1) z 1;<br />

x y z 3 z 3 x y p( x, y) xy(3 x y) 3xy 2<br />

x y<br />

2<br />

xy<br />

py ( x , y ) 3 x<br />

2<br />

x 2 xy 0 critical points are (0, 0), (0, 3), (3, 0),<br />

pxx (0, 0) 0, pyy (0, 0) 0, pxy (0, 0) 3 pxx pyy 2<br />

p xy 9 0 saddle<br />

pxx (0, 3) 6, pyy (0, 3) 0, pxy (0, 3) 3 pxx pyy 2<br />

p xy 9 0 saddle<br />

pxx (3, 0) 0, pyy (3, 0) 6, pxy (3, 0) 3 pxx pyy 2<br />

p xy 9 0 saddle<br />

pxx (1, 1) 2, pyy (1,1) 2, pxy (1, 1) 1 pxx pyy 2<br />

p xy 3 0 and p xx 0<br />

local maximum of p(1, 1,1) 1<br />

55. s( x, y, z) xy yz xz ; x y z 6 z 6 x y s( x, y) xy y(6 x y) x(6 x y)<br />

2 2<br />

6x 6 y xy x y sx<br />

( x, y) 6 2x y 0 and sy<br />

( x, y) 6 x 2y 0 critical point is (2, 2)<br />

2<br />

z 2; sxx (2, 2) 2, syy (2, 2) 2, sxy (2, 2) 1 sxxsyy s xy 3 0 and s xx 0 local maximum<br />

of s(2, 2, 2) 12<br />

56.<br />

2 2 2<br />

d( x, y, z) ( x 6) ( y 4) ( z 0) we can minimize d( x, y, z ) by minimizing<br />

2 2 2<br />

D( x, y, z) ( x 6) ( y 4) z ;<br />

2 2 2 2 2 2<br />

z x y D( x, y) ( x 6) ( y 4) x y<br />

Copyright<br />

2014 Pearson Education, Inc.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!