29.06.2016 Views

Thomas Calculus 13th [Solutions]

  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Chapter 14 Practice Exercises 1073<br />

Then<br />

b a 3<br />

x x x V x c V<br />

width<br />

c c ab<br />

2<br />

2 1/3<br />

c V<br />

ab ,<br />

x Depth<br />

2 1/3 2 1/3<br />

b c V b V<br />

c ab ac ,<br />

y and<br />

Height<br />

z<br />

2 1/3 2 1/3<br />

a c V a V<br />

c ab bc .<br />

86. The volume of the pyramid in the first octant formed by the plane is V ( a, b, c) 1 1 ab c 1 abc . The point<br />

(2, 1, 2) on the plane<br />

2 1 2<br />

1.<br />

a b c<br />

bc ac ab<br />

6 6 6<br />

bc<br />

ac<br />

6 6<br />

abc<br />

(2bc 2 ab abc ), and<br />

6<br />

6<br />

Thus,<br />

3 2 6<br />

We want to minimize V subject to the constraint 2bc ac 2 ab abc.<br />

V i j k and g ( c 2 b bc) i (2c 2 a ac) j (2 b a ab)<br />

k so that V g<br />

ab<br />

( c 2 b bc), (2c 2 a ac ), and 6<br />

(2 b a ab) 6<br />

( ac 2 ab abc),<br />

abc<br />

(2 bc ac abc) ac 2 bc and 2 ab 2 bc . Now 0 since<br />

a 0, b 0, and c 0 ac 2bc and ab bc a 2 b c . Substituting into the constraint equation gives<br />

2 2 2<br />

1 a 6 b 3 and c 6. Therefore the desired plane is<br />

x z<br />

a a a<br />

6 3 6<br />

1 or x 2y z 6.<br />

87. f ( y z) i xj xk, g 2xi 2 yj , and h zi xk so that f g h ( y z)<br />

i xj xk<br />

(2xi 2 yj) ( zi xk ) y z 2 x z, x 2 y, x x x 0 or 1.<br />

CASE1: x 0 which is impossible since xz 1.<br />

CASE 2: 1 y z 2 x z y 2 x and x 2 y y (2 )(2 y) y 0 or<br />

then<br />

2<br />

x 1 x 1 so with xz 1 we obtain the points (1, 0, 1) and ( 1, 0, 1). If<br />

abc<br />

y<br />

2<br />

4 1. If y 0,<br />

2<br />

4 1,<br />

then<br />

1<br />

2 . For 1<br />

2 , y x so 2 2 2<br />

x y 1 x 1 x 1<br />

with xz 1 z 2,<br />

2 2<br />

and we obtain the points<br />

1<br />

,<br />

1<br />

, 2 and<br />

1<br />

,<br />

1<br />

, 2 . For<br />

1<br />

2 2<br />

2 2<br />

2 , y x<br />

2<br />

x 1 x 1<br />

with xz 1 z 2, and we obtain the points<br />

1<br />

,<br />

1<br />

, 2 and<br />

2 2<br />

1<br />

,<br />

1<br />

, 2 .<br />

2 2<br />

2 2<br />

Evaluations give f (1, 0, 1) 1, f ( 1, 0, 1) 1, f 1 , 1 , 2 1 , f 1 , 1 , 2 1<br />

,<br />

1 1<br />

2 2<br />

3<br />

2<br />

2 2 2 2 2 2<br />

f , , 2 , and f 1 , 1<br />

, 2 3<br />

. Therefore the absolute maximum is 3 2 at 1<br />

,<br />

1<br />

, 2<br />

and<br />

1 1<br />

2 2<br />

2 2<br />

2<br />

, , 2 , and the absolute minimum is 1 2 at 1<br />

,<br />

1<br />

, 2 and<br />

1<br />

,<br />

1<br />

, 2 .<br />

2 2 2<br />

2 2<br />

2 2<br />

88. Let f ( x, y, z)<br />

x y z be the square of the distance to the origin. Then f 2xi 2yj 2 zk,<br />

g i j k , and h 4xi 4yj 2zk so that f g h 2x 4 x , 2y 4 y , and<br />

2z 2z 2 x(1 2 ) 2 y(1 2 ) 2 z(1 2 ) x y or<br />

1<br />

2 .<br />

2 2<br />

CASE 1: x y z 4x z 2x so that x y z 1 x x 2x 1 or x x 2x 1 (impossible and<br />

CASE 2:<br />

1<br />

2<br />

1 1<br />

4 4<br />

x y and z 1<br />

yielding the point<br />

1<br />

,<br />

1<br />

,<br />

1<br />

.<br />

2<br />

0 0 2 z(1 1) z 0 so that<br />

fails to satisfy the first constraint x y z 1.<br />

4 4 2<br />

Therefore, the point<br />

1<br />

,<br />

1<br />

,<br />

1<br />

on the curve of intersection is closest to the origin.<br />

4 4 2<br />

2 2<br />

2 2<br />

2x 2y 0 x y 0. But the origin (0, 0, 0)<br />

Copyright<br />

2014 Pearson Education, Inc.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!