29.06.2016 Views

Thomas Calculus 13th [Solutions]

  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Chapter 3 Additional and Advanced Exercises 217<br />

22. From Exercise 21 we have that fg is differentiable at 0 if f is differentiable at 0, f (0) 0 and g is continuous at 0.<br />

(a) If f ( x)<br />

sin x and g( x) | x |, then | x| sin x is differentiable because f (0) cos(0) 1, f (0) sin (0) 0<br />

and g( x) | x | is continuous at x 0.<br />

2/3 2/3<br />

(b) If f ( x)<br />

sin x and g( x) x , then x sin x is differentiable because<br />

2/3<br />

f (0) cos (0) 1, f (0) sin (0) 0 and g( x)<br />

x is continuous at x 0.<br />

(c) If f ( x) 1 cos x and g( x) 3 x , then 3 x (1 cos x ) is differentiable because f (0) sin (0) 0,<br />

1/3<br />

f (0) 1 cos (0) 0 and g( x)<br />

x is continuous at x 0.<br />

(d) If f ( x)<br />

x and 1 2<br />

g( x) x sin , then x sin 1<br />

2<br />

x<br />

is differentiable because f (0) 1, f (0) 0 and<br />

sin<br />

1<br />

lim x 1<br />

x<br />

sin lim lim sin t 0<br />

1<br />

x 0<br />

x<br />

x 0 x<br />

t<br />

(so g is continuous at x 0 ).<br />

x<br />

23. If f ( x)<br />

x and ( ) sin 1 2<br />

g x x , then x sin 1<br />

x<br />

x<br />

is differentiable at x 0 because f (0) 1, f (0) 0 and<br />

sin<br />

1<br />

lim x 1<br />

x<br />

sin lim lim sin t 0<br />

1<br />

x 0<br />

x<br />

x 0<br />

t<br />

(so g is continuous at x 0 ). In fact, from Exercise 21,<br />

x t<br />

h (0) g(0) f (0) 0. However, for x 2<br />

0, h ( x ) x cos 1 1 2 sin 1 .<br />

x<br />

x 2<br />

x<br />

x<br />

But<br />

lim h ( x ) lim cos 1 2 sin 1<br />

x 0 x 0<br />

x<br />

x x<br />

does not exist because cos 1<br />

x<br />

has no limit as x 0. Therefore,<br />

the derivative is not continuous at x 0 because it has no limit there.<br />

24. From the given conditions we have f ( x h) f ( x) f ( h), f ( h) 1 hg( h ) and lim g( h ) 1. Therefore,<br />

h 0<br />

f ( x) lim f ( x h) f ( x) lim f ( x) f ( h) f ( x) lim ( ) f ( h) 1<br />

( ) lim ( ) ( ) 1 ( )<br />

0<br />

h<br />

0<br />

h f x h h h 0<br />

h<br />

f x g h f x f x<br />

h 0<br />

f ( x) f ( x ) and f ( x ) exists at every value of x.<br />

dy du1 du2<br />

25. Step 1: The formula holds for n 2 (a single product) since y u1u 2 u<br />

dx dx 2 u1<br />

dx<br />

Step 2: Assume the formula holds for n k:<br />

dy du1 du2<br />

du<br />

y u1u 2 u 2 3 1 3 ... k<br />

k u u uk u u uk u1u 2 uk<br />

1 .<br />

dx dx dx dx<br />

dy d ( u1u 2 uk<br />

)<br />

duk<br />

1<br />

If y u1u 2 ukuk 1 u1u 2 uk u k 1, then uk<br />

1 u<br />

dx dx 1u2<br />

uk<br />

dx<br />

du1 du2<br />

duk<br />

duk<br />

1<br />

u2u3 uk u1 u3 uk u1u dx dx 2 uk 1 u<br />

dx k 1 u1u 2 uk<br />

dx<br />

du1 du2<br />

duk<br />

duk<br />

1<br />

u2u3 uk 1 u1 u3 uk 1 u1u 2 uk 1 uk 1 u1u 2 uk<br />

.<br />

dx dx dx dx<br />

Thus the original formula holds for n ( k 1) whenever it holds for n k.<br />

m<br />

26. Recall m!<br />

k k!( m k)! . m<br />

Then m!<br />

m m<br />

1 m and<br />

m! m!<br />

m!( k 1) m!( m k)<br />

1!( m 1)!<br />

k k 1 k!( m k)! ( k 1)!( m k 1)! ( k 1)!( m k)!<br />

m!( m 1)<br />

( m 1)! m 1<br />

( k 1)!( m k)!<br />

( 1)!(( 1) ( 1))! k 1 . Now, we prove Leibnizs rule by mathematical induction.<br />

k m k<br />

d( uv)<br />

Step 1: If n 1, then u dv v du . Assume that the statement is true for n k , that is:<br />

dx dx dx<br />

d k ( uv)<br />

1 2 2 1<br />

d k u v k d k u dv k d k u d v k<br />

1 2 ... du d k v d k v<br />

2 2 1<br />

.<br />

k k k dx<br />

k k dv<br />

u k 1 k<br />

dx dx dx dx dx dx dx<br />

Step 2: If n k 1, then<br />

k 1 k k 1 k k k 1 2<br />

d ( uv) d d ( uv)<br />

d u v d u dv k d u dv k d u d v<br />

k 1 dx k k 1 k dx k dx k 1 2<br />

dx dx dx dx dx dx dx<br />

k<br />

k 1 2 k 2 3 2 k 1<br />

k<br />

d u d v k d u d v k<br />

k<br />

2 1 2 2 ... d u d v du d u<br />

k k 2 3 k 1 2 k 1 k 1 dx<br />

v k<br />

dx dx dx dx dx dx dx<br />

1 1 1 2<br />

du d k v k k ( 1)<br />

k k k<br />

u d u d u v k d u dv d k u d v<br />

dx k k 1 k 1 k dx 1 2 k 1 2<br />

dx dx dx dx dx dx<br />

Copyright<br />

2014 Pearson Education, Inc.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!