29.06.2016 Views

Thomas Calculus 13th [Solutions]

  • No tags were found...

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

80. Let<br />

2<br />

u t du dt du dt<br />

Section 5.6 Substitution and Area Between Curves 387<br />

2<br />

v cos t dt (cos u)( du) sin u C1 sin( t) C1;<br />

at t 0 and v 8 we have 8 (0) C1 C1<br />

8 v ds sin( t) 8 s ( sin( t) 8) dt<br />

dt<br />

sin u du 8t C2 cos( t) 8 t C 2;<br />

at t 0 and s 0 we have 0 1 C2 C2<br />

1<br />

s 8t cos ( t) 1 s(1) 8 cos 1 10 m<br />

81. All three integrations are correct. In each case, the derivative of the function on the right is the integrand on the<br />

left, and each formula has an arbitrary constant for generating the remaining antiderivatives. Moreover,<br />

2 2<br />

2<br />

sin x C1 1 cos x C1 C2 1 C 1;<br />

also cos x C cos 2x<br />

1 1 1<br />

2 C<br />

2 2 2 C3 C2 C<br />

2 1 .<br />

2<br />

1/60<br />

82. (a) 1<br />

1/60<br />

V 1<br />

max<br />

1<br />

max sin 120 t dt 60 V<br />

0 0<br />

max 120<br />

cos(120 t) V<br />

2<br />

[cos 2 cos0]<br />

60<br />

0<br />

Vmax<br />

[1 1] 0<br />

2<br />

(b) Vmax 2Vrms<br />

2(240) 339 volts<br />

2<br />

1/60 2 2 2 1/60<br />

max<br />

1/60<br />

(c)<br />

1 cos 240 V<br />

Vmax sin 120 t dt V t<br />

0<br />

max dt (1 cos 240 t)<br />

dt<br />

0 2 2 0<br />

V 1/60<br />

max 1 max 1 1 1<br />

max<br />

t sin 240 t<br />

V sin(4 ) 0 sin(0)<br />

V<br />

2 240 0 2 60 240 240 120<br />

2 2 2<br />

5.6 SUBSTITUTION AND AREA BETWEEN CURVES<br />

1. (a) Let u y 1 du dy;<br />

y 0 u 1, y 3 u 4<br />

3 4 1/2 3/2<br />

4<br />

y 1 dy u du 2 u 2 (4) 3/2 2 (1) 3/2 2 (8) 2 (1) 14<br />

0 1 3 1 3 3 3 3 3<br />

(b) Use the same substitution for u as in part (a); y 1 u 0, y 0 u 1<br />

0 1 1/2 3/2<br />

1<br />

y 1 dy u du 2 u 2 (1) 3/2<br />

0 2<br />

1 0 3 0 3 3<br />

2<br />

2. (a) Let u 1 r du 2 r dr 1 du r dr;<br />

r 0 u 1, r 1 u 0<br />

2<br />

1 2 0<br />

3/2<br />

0<br />

1 1 1 3/2<br />

r 1 r dr u du u 0 (1) 1<br />

0 1 2 3 1 3 3<br />

(b) Use the same substitution for u as in part (a); r 1 u 0, r 1 u 0<br />

1 2 0<br />

r 1<br />

1 1 r dr u du<br />

0 2<br />

0<br />

2<br />

3. (a) Let u tan x du sec x dx; x 0 u 0, x<br />

4<br />

u 1<br />

/4 2 1<br />

2 1<br />

2<br />

tan xsec x dx u du u 1 0 1<br />

0 0 2<br />

0<br />

2 2<br />

(b) Use the same substitution as in part (a); x<br />

4<br />

u 1, x 0 u 0<br />

0 0<br />

2 0<br />

2<br />

tan xsec x dx u du u 0 1 1<br />

/4 1 2<br />

1<br />

2 2<br />

4. (a) Let u cos x du sin x dx du sin x dx; x 0 u 1, x u 1<br />

2 1 2 3 1 3 3<br />

0 3cos x sin x dx<br />

1<br />

3 u du [ u ] 1 ( 1) ( (1) ) 2<br />

Copyright<br />

2014 Pearson Education, Inc.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!